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Abstract 

The present paper constitutes a continuation of a previous relevant paper, entitled “A mathematical 

model for population distribution” by Elias (2023), in which the general theoretical model was 

described, and some initial applications were presented, namely some approximations of population 

distribution of a one-dimensional inertial system and a special case of one-dimensional dynamic 

system. Herein, by using the above model, the following issues will be addressed: a) the examination 

of multidimensional linear systems, both inertial and dynamic, facilitating the study of polycentric 

cities and systems of multiple cities (metropolitan areas) and b) the variation of the population 

distribution due to the geographical diversifications of the habitat of the system, as in a sloped terrain 

or of coastal cities. For each of the above cases, their behaviour is presented by producing and 

analysing the corresponding equations of motion and distribution and, whenever possible, an effort 

has been made to qualitatively compare the theoretical results to field data.  
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1. Introduction 

The behavior of the population of a city or a collection of cities, that is, its evolution over time and 

its expansion in the geographic space, determines the social behavior of this city and, at the same 

time, is determined by it. The economic, functional and cultural characteristics of the city can be 
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traced and understood by the knowledge of how the density of its population vary in relation to time, 

space and the variation of the environment. Crucial functions, such as the transportational network, 

the operational zoning (including housing, commerce, public areas etc.) or vital programs referred to 

education, security and general quality of life, can be optimized of collapse depending on the 

profound understanding of the behavior of the density of the population, or the lack of it (e.g.  Viguie 

(2017), Ayala, Martin-Roman and Vincente (2019), Castells-Quintana, Royuela and Veneri (2019), 

Abozeid and AboElatta (2021), Dentinho, Kourtit and Nijkamp (2021) or DiBartolomeo and Turnbull 

(2021)). 

The necessity of improve the understanding such functions led to the creation of comprehensive 

mappings of the density of the population in various existing cities around the world (e.g. Bertaud 

and Malpezzi (2003), Bergmann (2019), Subasinghe, Wang and Murayama (2022) or Smith (2023)) 

and the derivation of analytical and statistical models and formulations (e.g. Clark (1951), Zielinski 

(1980), Griffith and Wong (2007), You (2017), Lang, Long and Chen (2018), Volpati and Barthelemy 

(2020), Feng and Chen (2021), Subasinghe, Wang, and Murayama (2022)) to corelate the density of 

the population of a city, or a collection of cities, to time and geographical space. One analytical model 

is described in Elias (2023), attempting to provide some general constitutional equations studying the 

spaciotemporal behavior of the population distribution, by using the smallest possible number of 

axiomatic principles. In the present paper, some applications of this model are presented, namely the 

investigation of inertial and dynamic linear systems and the influence of topographical irregularities 

on population distribution. 

An attempt to understand the behavior of even the “simpler” society requires the determination 

and analysis of a multitude of interacting factors, so that the derivation of a formalization “from 

within” seems futile, at least from the point of view of an engineer. The formalization “from above” 

of some social characteristics (an “in vitro society”) can be achieved, by the axiomatic acceptance 

that a subset 𝑸 = {𝑄1, … , 𝑄𝑁} of the above set of the interacting factors exists, so that the members 

of 𝑸 are linearly independent to each and, also, that 𝑸 adequately approximates this society. This 

axiom permits one to establish a space of reference for the social system, which has dimension 𝑁, a 

base (the natural base): 𝑸 = {𝑄1, … , 𝑄𝑁} and a Riemannian metric (in general): (𝑑𝑠)2 = 𝑔𝑖𝑗𝑑𝑄𝑖𝑑𝑄𝑗 

(𝑖, 𝑗 = 1, … , 𝑁), where the functions 𝑔𝑖𝑗 = 𝑔𝑖𝑗(𝑄1, … , 𝑄𝑁) are the components of the metric tensor. 

By this device, any social event of the system can be represented by a point of its space of 

reference, so that the history of the system coincides to a curve embedded into the space of reference, 

namely the trajectory 𝑸(𝑠) = (𝑄1(𝑠), … , 𝑄𝑁(𝑠)), where the parameter 𝑠 is the arc length of the curve.  

The application of the Principle of the Least Action produces the exact form of the trajectory, as a 

solution of the simultaneous differential equations: 
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𝑑2𝑄𝑖(𝑠)

(𝑑𝑠)2
+ 𝛤𝑗𝑘

𝑖 𝑑𝑄𝑗(𝑠)

𝑑𝑠

𝑑𝑄𝑘(𝑠)

𝑑𝑠
= 0 (1) 

which is the geodesics of the space of reference, where: 

𝛤𝑗𝑘
𝑖 =

1

2
𝑔𝑖𝑚 (

𝜕𝑔𝑚𝑗

𝜕𝑄𝑘
+

𝜕𝑔𝑚𝑘

𝜕𝑄𝑗
−

𝜕𝑔𝑖𝑗

𝜕𝑄𝑚
) (2) 

is the Christoffel symbol of the second kind. 

 It should be noticed that the temporal coordinate 𝑥0 ≡ 𝑡 or the spatiotemporal coordinates 𝒙 =

{𝑥0, 𝑥1, 𝑥2, 𝑥3} which the usual base of a geographical four-dimensional Euclidean space, are not 

included in any base 𝑸 = {𝑄1, … , 𝑄𝑁} of the space of reference, since the behavior of a social system 

is independent of the values of both time or geographical space. Indeed, let us consider a completely 

empty, homogeneous and isotropic field, then the placement of the same society at different 

geographical coordinates and time would not produce any variation in the behavior of this society. 

Any external influence, in the form of geographical diversifications or even other social or ecological 

systems are not inner characteristics of the first society but forces acting upon it, hence, these 

influences should be treated as boundary conditions applied on its constitutional differential 

equations. In section 3, two examples of incorporating geographical diversification into the 

constitutional equations are presented. 

 The transformation between the arc length 𝑠 and the time 𝑡 in the trajectory deduces the equation 

of motion of the system: 

𝑑2𝑄𝑖(𝑡)

(𝑑𝑡)2
+ 𝛤𝑗𝑘

𝑖 𝑑𝑄𝑗(𝑡)

𝑑𝑡

𝑑𝑄𝑘(𝑡)

𝑑𝑡
= 0 (3) 

describing its temporal behavior. The spatiotemporal character of the system in given by the densities 

𝑄𝑖(𝒙) of the components of the base, defined as: 

𝑄𝑖(𝑥0) = ∫ 𝑄𝑖(𝒙)𝑑𝛷

𝛷

∶ 𝑑𝛷 = 𝑑𝑥1𝑑𝑥2𝑑𝑥3 (4) 

so that the equation of distribution is derived as follows: 

∑ (
𝜕2𝑄𝑖(𝒙)

𝜕𝑥𝜇𝜕𝑥𝜇
+ 𝛤𝑗𝑘

𝑖 𝜕𝑄𝑗(𝒙)

𝜕𝑥𝜇

𝜕𝑄𝑘(𝒙)

𝜕𝑥𝜇
)

3

𝜇=0

= 0 ⇒ ∆𝑄𝑖(𝒙) + ∑ (𝛤𝑗𝑘
𝑖 𝜕𝑄𝑗(𝒙)

𝜕𝑥𝜇

𝜕𝑄𝑘(𝒙)

𝜕𝑥𝜇
)

3

𝜇=0

= 0 (5) 

where the Laplace operator of relation 5 is, in general, four-dimensional (spaciotemporal). 

 The last remaining element for the constitutional equations of relations 3 and 5 to be fully 

determined is the exact form the metric tensor, which can be deduced by a third axiom, namely the 

Principle of Equivalence. This axiom states that the external force acting upon a system is equivalent 

to the curvature of the space of reference of this system, so that in the case of an inertial (no force) 

system, the space of reference is Euclidean, that is, a base 𝑼 = {𝑈1, … , 𝑈𝑁} of the space (the usual 
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base) exists, such that, the metric form becomes: (𝑑𝑠)2 =  𝛿𝑖𝑗𝑑𝑈𝑖𝑑𝑈𝑗 = 𝑑𝑈𝑖𝑑𝑈𝑖 (𝑖, 𝑗 = 1, … , 𝑁). 

Hence, the constitutional equations of an inertial system, as described by its usual base, takes the 

forms of: 

𝑑2𝑈𝑖(𝑡)

(𝑑𝑡)2
= 0 𝑎𝑛𝑑  ∆𝑈𝑖(𝒙) = 0 (6) 

therefore, the force 𝑭(𝑡) = (𝐹1(𝑡), … , 𝐹𝑁(𝑡)) and the stress 𝑭(𝒙) = (𝐹1(𝒙), … , 𝐹𝑁(𝒙)) of a 

dynamic system, when described by the usual base of the system, are given by: 

𝐹𝑖(𝑡) = −𝛤𝑗𝑘
𝑖 𝑑𝑈𝑗(𝑡)

𝑑𝑡

𝑑𝑈𝑘(𝑡)

𝑑𝑡
 𝑎𝑛𝑑 𝐹𝑖(𝒙) = − ∑ (𝛤𝑗𝑘

𝑖 𝜕𝑈𝑗(𝒙)

𝜕𝑥𝜇

𝜕𝑈𝑘(𝒙)

𝜕𝑥𝜇
)

3

𝜇=0

 (7) 

An analytical treatment of the physical and mathematical aspects of the above conclusions can be 

found in i.e. Gelfand and Fomin (1963), Weinstock (1974), Landau and Lifshitz (1980), Dodson and 

Poston (1997), Francoise, Nabel and Tsun (Editors) (2006), Itskov (2007), Talman (2007) or Bourles 

(2019). 

 The population system is the limited case of a social system, where each component of the 

natural base of its space reference represents populations, that is, quantities obeying the Kolmogorov 

simultaneous equations (i.e. Smirnov (1964)): 

𝑑𝑄𝑖(𝑡)

𝑑𝑡
= 𝑓𝑖(𝑄1(𝑡), … , 𝑄1(𝑡)) ∶ 𝑖 = 1, … , 𝑁 (8) 

In the restricted situation in which the population system is inertial and one-dimensional, relation 8 

reduces to the Malthus equation: 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝐶𝑄(𝑡) ⇒ 𝑄(𝑡) = 𝑒𝑥𝑝(𝐴𝑡 + 𝐵) (9) 

where 𝐴, 𝐵 and 𝐶 are a real constant. The comparison between relations 6 and 9 deduces the 

acceptable transformation between the natural and the usual base of a population system: 

𝑄(𝑈) = 𝑒𝑥𝑝(𝑈) (10) 

It can be noticed that relation 10 denotes an admissible transformation (bijective function) for all 

values of 𝑈 and for all positive values of 𝑄, since there can be no negative values for a population. 

 The simultaneous manipulation of two bases, namely the usual and the natural, is essential for 

the complete understanding of a system. Indeed, described by the usual base, the constitutional 

equations take their simplest form and the external and internal influences are expressed in their purest 

expression, without terms derived from base transformation. On the other hand, the components of 

the usual base do not include the physical attributes and characteristics of the system, which only the 

natural base can achieve. For example, in the case of an inertial population component, its description 

by the usual base produces an equation of motion which is linear with respect to time and although 
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this equation is the simplest one, cannot produce the main characteristic of the population, that is its 

exponential growth over time. This characteristic is given when the same component is referred to its 

natural base, produced by the transformation of relation 10. Evidently, another transformation of the 

usual base can correspond to some base components having entirely different characteristics 

(economic, demographic etc.). 

 

2. Definition of linear systems with constant coefficients 

Let the starting point be an N-dimensional inertial population system, where no component of its base 

interacts with any other component or with the environment of the system. In this case, a base of its 

space reference exists, namely the usual base �̃� = {�̃�1, … , �̃�𝑁}, for which the metric form becomes 

Pythagorean: (𝑑𝑠)2 = 𝑑�̃�𝑖𝑑�̃�𝑖 (𝑖 = 1, … , 𝑁), as mentioned in the previous section. The existence of 

any influence to the components of the base �̃� can be introduced by a function of the form �̃�𝑁+1 =

�̃�𝑁+1(�̃�1, … , �̃�𝑁), where the component �̃�𝑁+1 is a dummy one (temporarily used to facilitate the 

calculations). Hence, the metric form incorporates the influence as follows: 

(𝑑𝑠)2 = 𝑑�̃�𝑁+1𝑑�̃�𝑁+1 + ∑(𝑑�̃�𝑖𝑑�̃�𝑖)

𝑁

𝑖=1

= ∑ ((𝛿𝑖𝑗 +
𝜕�̃�𝑁+1

𝜕�̃�𝑖

𝜕�̃�𝑁+1

𝜕�̃�𝑗
) 𝑑�̃�𝑖𝑑�̃�𝑗)

𝑁

𝑖,𝑗=1

= 𝑔𝑖𝑗(�̃�1, … , �̃�𝑁)𝑑�̃�𝑖𝑑�̃�𝑗 ∶ 𝑖, 𝑗 = 1, … , 𝑁 

(11) 

where, in general, the metric is non-Euclidean and the metric tensor is a function of the components 

of the base. 

 In the case that the influence can be approximated by a linear form, that is when �̃�𝑁+1 =

�̃�𝑁+1(�̃�1, … , �̃�𝑁) is a linear function of the components of the base, all the components of the metric 

tensor are real constants. Then, a base transformation of the form �̃�𝑖 = �̃�𝑖 (�̃̃�1, … , �̃̃�𝑁) there always 

exists, such that the metric form of relation 11 to be reduced to a diagonal metric form: (𝑑𝑠)2 =

𝜉𝑖𝑑�̃̃�𝑖𝑑�̃̃�𝑖, where the quantities 𝜉𝑖 are real but non necessary positive constants. A further of reduction 

of the metric form to the Pythagorean metric: (𝑑𝑠)2 = 𝑑𝑈𝑖𝑑𝑈𝑖 can be achieved by the application of 

a second transformation 𝑑𝑈𝑖 = 𝜆𝑖𝑑�̃̃�𝑖 (all 𝑑�̃̃�𝑖 being unit vectors), where the eigenvalues 𝜆𝑖 ≡ √𝜉𝑖 

can have real or complex constant values It should be noted that since the system and, consequently, 

its space of reference is N-dimensional, there exist exactly 𝑁 distinct and non-vanishing eigenvalues. 

For the arc length 𝑑𝑠 of the trajectory to take only real values, all complex quantities 𝜆𝑖 should be in 

pairs of complex conjugates. This last base 𝑈 = {𝑈1, … , 𝑈𝑁} can be considered the usual base of the 

system, which incorporates both the external and internal influences expressed by relation 11. The 

existence of complex eigenvalues “informs” the system of its dynamic character, since they alter the 
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space of reference from Euclidean to Pseudo-Euclidean. A detailed treatise on this subject and on 

Hermitian forms can be found in i.e. Sokolnikoff (1964), Lang (1995), Dodson and Poston (1997). 

 It can be noticed that in either cases of Euclidean or Pseudo-Euclidean space, the components 

of the metric tensor are constants, either real of complex, hence all the components of the Christoffel 

symbols vanish, reducing the equations of motion and distribution for the base 𝑼 = {𝑈1, … , 𝑈𝑁} as 

in relation 6, that is: 𝑈𝑖(𝑡) =  𝜆𝑖𝑡 + 𝑐𝑖 and ∆𝑈𝑖(𝒙) = 0, where 𝑐𝑖 are real constants. Since the metric 

form when described by the usual base is Pythagorean, the transformation of relation 10 can be 

applied, given the simplest natural base of a population system: 𝑷 = {𝑃1, … , 𝑃𝑁}, where 𝑃𝑖 =

𝑒𝑥𝑝(𝑈𝑖) and the components of this base can be used as the building blocks for more complicated 

population system. The constitutional equations of an inertial system, where all the eigenvalues 𝜆𝑖 

are real constants, are given by: 

𝑃𝑖(𝑡) = 𝑒𝑥𝑝 (𝑈𝑖(𝑡)) = 𝐶𝑖𝑒𝑥𝑝(𝜆𝑖𝑡) ⇒
𝑑𝑃𝑖(𝑡)

𝑑𝑡
= 𝜆𝑖𝑃𝑖(𝑡) (12) 

for the equation of motion, where 𝐶𝑖 = 𝑒𝑥𝑝(𝑐𝑖) are real constants and 

𝑃𝑖(𝒙) = 𝑒𝑥𝑝 (𝑈𝑖(𝒙)): ∆𝑈𝑖(𝒙) (13) 

for the equation of distribution. 

For the dynamic system, some complex eigenvalues exist, forming pair of complex conjugates, 

such that: 𝜆𝑖 = 𝛼𝑖 + 𝐼𝛽𝑖, where 𝐼 = √−1 represent the imaginary unit, for clarity reasons. Hence, 

𝑈𝑖(𝑡) = 𝛼𝑖𝑡 + 𝐼𝛽𝑖𝑡 + 𝑐𝑖 and the equation of motion for the base 𝑷 becomes: 

𝑃𝑖(𝑡) = 𝐶𝑖𝑒𝑥𝑝(𝜆𝑖𝑡) = 𝐶𝑖𝑒𝑥𝑝(𝛼𝑖𝑡) (𝑐𝑜𝑠(𝛽𝑖𝑡) + 𝐼𝑠𝑖𝑛(𝛽𝑖𝑡)) (14) 

where 𝛼𝑖, 𝛽𝑖 and 𝑐𝑖 are real constants. In an analogous manner, the equation of distribution has been 

informed for the dynamic state of the system by being constructed as a complex function: 𝑈𝑖(𝒙) =

𝑈𝑅𝐸
𝑖 (𝒙) + 𝐼𝑈𝐼𝑀

𝑖 (𝒙), where 𝑈𝑅𝐸
𝑖 (𝒙) and 𝑈𝐼𝑀

𝑖 (𝒙) are the real and the imaginary parts respectively. The 

existence of a complex function 𝑈𝑖(𝒙) indicates that exactly one other such function exists that is the 

complex conjugate of the former. The equation of distribution for the base 𝑷 is given by: 

𝑃𝑖(𝒙) = 𝑒𝑥𝑝 (𝑈𝑖(𝒙)) = 𝑒𝑥𝑝 (𝑈𝑅𝐸
𝑖 (𝒙)) (𝑐𝑜𝑠 (𝑈𝐼𝑀

𝑖 (𝒙)) + 𝐼𝑠𝑖𝑛 (𝑈𝐼𝑀
𝑖 (𝒙))) 

𝑤ℎ𝑒𝑟𝑒 ∆𝑈𝑖(𝒙) = 0 ⇒ ∆𝑈𝑅𝐸
𝑖 (𝒙) = ∆𝑈𝐼𝑀

𝑖 (𝒙) = 0 

(15) 

Relations 14 and 15 are derived by applying Euler’s formula to relation 12 and 13 respectively. It can 

be noticed that the components 𝑃𝑖(𝑡) of the dynamic system (Figure 1(b)) vanish after a short period 

of time, leading the system to collapse. This inconsistency is nullified when the system takes its 

general form. 
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Figure 1. Representation of two components 𝑃1(𝑡) and 𝑃2(𝑡) of the equation of motion and the total 

population 𝑃(𝑡) = 𝑃1(𝑡) + 𝑃2(𝑡), with blue, orange and black solid lines respectively. The inertial 

case of relation 12 is shown in Figure 1(a) and the dynamic one of relation 14 in Figure 1(b). 

             (a) 

 

           (b) 

 

 Source: Author’s representation 

 

 The most general N-dimensional linear population system with constant coefficients has the 

following form: 

𝑑𝑄𝑖(𝑡)

𝑑𝑡
= 𝐴𝑗

𝑖𝑄𝑗(𝑡) ⇒ [
𝑑𝑄1(𝑡) 𝑑𝑡⁄

⋮
𝑑𝑄1(𝑡) 𝑑𝑡⁄

] = [
𝐴1

1 ⋯ 𝐴𝑁
1

⋮ ⋱ ⋮
𝐴1

𝑁 … 𝐴𝑁
𝑁

] [
𝑄1(𝑡)

⋮
𝑄𝑁(𝑡)

] (16) 

where all 𝐴𝑗
𝑖 are real constants. Both relations 12 and 16 are special cases of Kolmogorov equations 

in relation 8 and describe the same system (that defined by the metric form in relation 11) using 

different natural bases. Indeed, by starting the base 𝑷, a linear transformation: 𝑄𝑖 = 𝐵𝑗
𝑖𝑃𝑗 can be 

applied, where 𝐵𝑗
𝑖 are real constants, which leads to a now, more general, natural base 𝑸 =

{𝑄1, … , 𝑄𝑁}. The matrix 𝑨 = [𝐴𝑗
𝑖] of relation 16 is derived by the matrix transformations 𝑩 = [𝐵𝑗

𝑖] 

and 𝜦 = [𝜆𝑖] (diagonal matrix) as follows: 𝑨 = 𝑩𝜦𝑩−1, that is: 𝐴𝑗
𝑖𝐵𝑘

𝑗
= 𝐵𝑘

𝑖 𝜆𝑘. Finally, when referred 

to the natural base 𝑸 = {𝑄1, … , 𝑄𝑁}, the equation of motion is given by: 

𝑄𝑖(𝑡) = 𝐵𝑘
𝑖 𝑃(𝑡) = 𝐵𝑘

𝑖 𝐶𝑘𝑒𝑥𝑝(𝜆𝑘𝑡) (17) 

and the equation of distribution, by: 

𝑄𝑖(𝒙) = 𝐵𝑘
𝑖 𝑃𝑘(𝒙) = 𝐵𝑘

𝑖 𝑒𝑥𝑝(𝑈𝑘(𝒙)) ∶  ∆𝑈𝑘(𝒙) = 0 (18) 

where the constants 𝐵𝑗
𝑖 and 𝐶𝑖 are real and each eigenvalue 𝜆𝑖 can be either real or complex (in the 

latter case the Euler’s formula is applied).  

 The form of relation 18 permits the problem of the distribution of one or many populations to 

be reduced to the derivation of a proper particular solution of the Laplace equation: ∆𝑈𝑘(𝒙) = 0, 
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expressed to a three-dimensional geographic space, including the time and two geographic 

coordinates: 𝒙 = {𝑥0, 𝑥1, 𝑥2}. In this and the next sections the habitat of the population is assumed to 

be a flat (regular) two-dimensional surface. The introductions of geographical irregularities will be 

addressed in section 4, where the Laplace equation will be replaced by Laplace Beltrami equation. 

There who main categories by which a city population can be distributed, the first of which is the 

(nearly) homogeneous development, where the general city plan is mostly orthonormal 

(Hippodamian) in which case the geographic base use Cartesian coordinates: 𝒙 = {𝑡, 𝑥, 𝑦}, leading to 

the following expression of Laplace equation: 

∆𝑈𝑖(𝑡, 𝑥, 𝑦) =
𝜕2𝑈𝑖(𝑡, 𝑥, 𝑦)

𝜕𝑡𝜕𝑡
+

𝜕2𝑈𝑖(𝑡, 𝑥, 𝑦)

𝜕𝑥𝜕𝑥
+

𝜕2𝑈𝑖(𝑡, 𝑥, 𝑦)

𝜕𝑦𝜕𝑦
= 0 (19) 

The second category is that of (nearly) isotropic development where the general city plan is mostly 

radial (centralized). This category is better described by a polar coordinate system, having a base: 

𝒙 = {𝑡, 𝜌, 𝜃} where 𝜌 is the polar radius from the hypothetical center of the city and 𝜃 is the azimuthal 

angle. The Laplace equation in this case takes the expression: 

∆𝑈𝑖(𝑡, 𝜌, 𝜃) =
𝜕2𝑈𝑖(𝑡, 𝜌, 𝜃)

𝜕𝑡𝜕𝑡
+

𝜕2𝑈𝑖(𝑡, 𝜌, 𝜃)

𝜕𝜌𝜕𝜌
+

1

(𝜌)2

𝜕2𝑈𝑖(𝑡, 𝜌, 𝜃)

𝜕𝜃𝜕𝜃
+

1

𝜌

𝜕𝑈𝑖(𝑡, 𝜌, 𝜃)

𝜕𝜌
= 0 (20) 

It is obvious that most cities, especially the historical ones, are the product of the incorporation of 

areas of both categories (ancient and modern parts of the city) or of an amalgamation. An analytical 

study and the derivation of complete solutions of Laplace equation can be found in i.e. Smirnov 

(1964), Pinchover and Rubinstein (2005), Taylor (2011) or Sauvigny (2012). 

 

3. Analysis of linear systems with constant coefficients 

The formulation of the previous section permits the production of any linear system as a linear 

combination of the building blocks 𝑃𝑖(𝒙), thus reducing the problem of the population distribution 

to the solution of the Laplace equations in relation 19 or 20. In the case of a inertial system, the 

boundary conditions of the Laplace equation, derived by the observations and the models referred in 

section 1, are as follows: 

 As mentioned in the previous section, the necessary and sufficient condition of a linear system 

to be inertial is for all the eigenvalues 𝜆𝑖 to take real values, which leads all the components of 

the equation of motion to be uniformly monotonous functions of time, as in relation 12 and 

Figure 1.a. Hence, due to the properties of the transformations in relation 13 and 18, any 

particular solution of Laplace equation of relations 19 or 20 should include only temporal terms 

that are also uniformly monotonous functions. 
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 The observations and the models mentioned at the references of section 1, indicate that the 

spatial terms of any particular solution should have a general tendency (pending some localized 

fluctuations) of decreasing population density as the distance from the hypothetical city center 

increases. Moreover, in reference to relation 20, the population density cannot depend on the 

polar angle 𝜃 in a monotonous manner but, rather, the terms include 𝜃 should be constant or 

periodic functions. 

 In this section, the habitat of the system is supposed to be flat, so that the density is unaffected 

by any geographical features. The influence of population distribution due to geographical 

variations are dealt with in section 4. 

 An inertial component 𝑃𝑖(𝒙) of the equation of distribution, derived as a particular solution of 

relation 19, including the above boundary conditions, is as follows: 

𝑃𝑖(𝑡, 𝑥, 𝑦) = 𝑒𝑥𝑝 (𝑈𝑖(𝑡, 𝑥, 𝑦))

= 𝑒𝑥𝑝 ((𝐶1
𝑖𝑒𝑥𝑝 (𝑡√𝐾1

𝑖) + 𝐶2
𝑖𝑒𝑥𝑝 (−𝑡√𝐾1

𝑖)) (𝐶3
𝑖𝑐𝑜𝑠 (𝑥√|𝐾2

𝑖|)

+ 𝐶4
𝑖𝑠𝑖𝑛 (𝑥√|𝐾2

𝑖|)) (𝐶5
𝑖𝑐𝑜𝑠 (𝑦√|𝐾3

𝑖|) + 𝐶6
𝑖𝑠𝑖𝑛 (𝑦√|𝐾3

𝑖|)) +
𝐾4

𝑖

2
(𝑡)2

+
𝐾5

𝑖

2
(𝑥)2 +

𝐾6
𝑖

2
(𝑦)2 + 𝐶7

𝑖𝑡 + 𝐶8
𝑖𝑥 + 𝐶9

𝑖𝑦 + 𝐶10
𝑖 ) 

Such that 𝐾1
𝑖 + 𝐾2

𝑖 + 𝐾3
𝑖 = 0 and 𝐾4

𝑖 + 𝐾5
𝑖 + 𝐾6

𝑖 = 0 

(21) 

where 𝐾1
𝑖 , 𝐾4

𝑖 ≥ 0 (according to the first boundary condition), and 𝐶𝑚
𝑖  are real constants.  Since, 

according to the third boundary condition (flat habitat), the behavior of the population distribution 

has no reason to be altered according to the choice of the geographical coordinates 𝑥 and 𝑦, the 

constants 𝐾𝑚
𝑖  become: 

𝐾2
𝑖 = 𝐾3

𝑖 = − 𝐾1
𝑖 2⁄  and 𝐾5

𝑖 = 𝐾6
𝑖 = − 𝐾4

𝑖 2⁄  (22) 

It can be noticed that the Laplace equation (relations 19 and 20) is a linear partial differential equation, 

therefore any linear combination of any particular solutions, such that is given in relation 21, is also 

a particular solution of the Laplace equation: 

𝑈𝑖(𝑡, 𝑥, 𝑦) = 𝐴1
𝑖 𝑈1(𝑡, 𝑥, 𝑦) + 𝐴2

𝑖 𝑈2(𝑡, 𝑥, 𝑦) + ⋯ (23) 

where 𝐴𝑚
𝑖  are real constants. Due to relation 23, the equation of distribution can take a rather extensive 

form, which can be proven unnecessary, since the more manageable form of relation 21 can 

sufficiently describe the important characteristics of a city. 
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 The purely isotropic behavior of the population distribution is given by a reduction of relation 

21, such that all the constants from 𝐶1
𝑖 to 𝐶6

𝑖  vanish, so that only the exponent of a polynomial remains, 

as represented in Figure 2: 

𝑃𝑖(𝑡, 𝑥, 𝑦) = 𝑒𝑥𝑝 (𝑈𝑖(𝑡, 𝑥, 𝑦))

= 𝑒𝑥𝑝 (
𝐾4

𝑖

2
(𝑡)2 −

𝐾4
𝑖

4
(𝑥)2 −

𝐾4
𝑖

4
(𝑦)2 + 𝐶7

𝑖𝑡 + 𝐶8
𝑖𝑥 + 𝐶9

𝑖𝑦 + 𝐶10
𝑖 ) 

(24) 

This last relation was mentioned, along with its derivation from the general model, in Elias (2023) 

and is a variation of the equations proposed by Clark (1951), Zienlinski (1980), Anselyn and Can 

(1986), Martori and Surinach (2001) or Griffith and Wang (2007), which take the general form: 

𝑃(𝜌) = 𝑒𝑥𝑝 ( ∑ (𝐶𝑚(𝜌)𝑚)

𝑀

𝑚=0

) (25) 

where the population distribution is considered as independent of time (time is constant) and 𝜌 

represents the polar radius from the hypothetical city center. It can be noticed that although the total 

population increases exponentially over time, this increase is not geographically homogeneous but, 

rather, tends to concentrate to the denser areas near the hypothetical center. 

 

Figure 2. Representation of a partial application of relation 21, that is a purely isotropic distribution 

of a one-dimensional inertial system 𝑃(𝒙). a) Depiction of the population density along the 𝑥 axis for 

three instants of time 𝑡1 < 𝑡2 < 𝑡3 (solid, dashed and dotted lines respectively). b) 3D depiction of 

Figure 2-a, for a random instant, where darker areas correspond to higher density. 

(a) 

 

               (b) 

 

 Source: Author’s representation 

 The complete application of relation 21 produces an unisotropic and unhomogeneous behavior 

and, pending the choices of the real constants 𝐶3
𝑖 , 𝐶4

𝑖 , 𝐶5
𝑖  and 𝐶6

𝑖 , lead to symmetrical (as in the 

following Figures 3 and 4) or asymmetrical population distributions, relative to the hypothetical city 

center, where 𝑥 = 𝑦 = 0.  
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Figure 3. Representation of the complete application of relation 21 where darker areas correspond to 

higher density. a) Depiction of the population density along the 𝑥 axis for three instants of time 𝑡1 <

𝑡2 < 𝑡3 (solid, dashed and dotted lines respectively). b) contour plot of the population density at the 

advanced state of the city (𝑡 = 𝑡3). c, d, e) 3D depiction of Figure 3-a, for the initial, intermediate and 

advance state of the city respectfully. 

(a) 

 

(b: 𝑡 = 𝑡3) 

 

(c: 𝑡 = 𝑡1) 

 

(d: 𝑡 = 𝑡2) 

 

(e: 𝑡 = 𝑡3) 

 

 Source: Author’s representation 

 

The most important characteristic of relation 21 is that it can generate polycentric cities, since: 

 Although the total population of the city increases exponentially, this increase is not 

homogeneous. 

 In the initial state of the city (small values of time and population), the population density 

follows a uniformly monotonous decreasing function of the polar radius, as in the case of 

Figures 2(a), 3(c) and 4(c). 

 In the intermediate state, the city tends to form neighborhoods, that is regularly arranged areas 

of local extremums of the population density, where one or more absolute maximum values 

occur at, or near, the city center, as in Figures 3(d) and 4(d). 
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 In the advanced state, the difference between the alternatively arranged local maximum and 

minimum values of the population density become more prominent, specifying separate 

neighborhoods, as in Figures 3(e) and 4(e). 

 

Figure 4. Alternate representation of the complete application of relation 21 where darker areas 

correspond to higher density. a) Depiction of the population density along the 𝑥 axis for three instants 

of time 𝑡1 < 𝑡2 < 𝑡3 (solid, dashed and dotted lines respectively). b) contour plot of the population 

density at the advanced state of the city (𝑡 = 𝑡3). c, d, e) 3D depiction of Figure 4(a), for the initial, 

intermediate and advance state of the city respectfully. 

(a) 

 

(b: 𝑡 = 𝑡3) 

 

(c: 𝑡 = 𝑡1) 

 

(d: 𝑡 = 𝑡2) 

 

(e: 𝑡 = 𝑡3) 

 

 Source: Author’s representation 

 

 It can be noticed that the only difference between Figures 3 and 4 is that, in the former there 

exists one major center (Figure 3(c)) and several minor (local) centers, as opposed to the latter, where 

exist several (in this case four) major centers replacing the initial center of Figure 4(c), and several 

local centers. The question as to whether the case of Figure 3 constitutes a polycentric city, in contrast 

to the well-defined polycentric city of Figure 4, is up to the decentralization (or not) of complex 

administrational, economic, cultural etc. networks (see, for example, Louf and Barthelemy (2013), 
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Schmitt et al. (2015), Viguie (2017), Castell-Quintanna, Royuela and Veneri (2019), Abozeid and 

AboElatta (2021), Wu, Smith and Wang (2021), Derudder, Meijers, Harrison at el. (2022)). 

Obviously, the degree of interdependence between the geographical topology of these networks and 

the population distribution increases with respect to time (and consequently to population density). 

The most profound example is the optimization of the transportation network that, after the 

intermediate state of the city, can be distinguished in the contour plots (maps) of Figures 3(b) and 

4(b), where the major city blocks are indicated by dark areas. An optimal transportation network is 

defined by the needs of the population (local density areas), in the intermediate state, but after some 

time (in the advanced state) it contributes to the formation of population distribution. 

 The choice of Cartesian coordinate system for the description of the geography of the habitat 

in the constitutional equations of relation 19 leads to equation of distribution in relation 21, which 

produce city blocks (urban plan) arranged in an orthonormal (Hippodamian) manner, but this 

arrangement is not unique. Indeed, by choosing the polar coordinate system, as in relation 20, the 

arrangement of the city blocks becomes centralized, expanding radially from the city center outward. 

By applying the same boundary conditions as in relation 19, the polar equation of distribution is given 

by: 

𝑃𝑖(𝑡, 𝜌, 𝜃) = 𝑒𝑥𝑝 (𝑈𝑖(𝑡, 𝜌, 𝜃))

= 𝑒𝑥𝑝 ((𝐶1
𝑖𝑒𝑥𝑝 (𝑡√𝐾1

𝑖) + 𝐶2
𝑖𝑒𝑥𝑝 (−𝑡√𝐾1

𝑖)) (𝐶3
𝑖𝐽

√|𝐾2
𝑖 |

(𝜌√𝐾1
𝑖)

+ 𝐶4
𝑖𝑌

√|𝐾2
𝑖 |

(𝜌√𝐾1
𝑖)) (𝐶5

𝑖𝑐𝑜𝑠 (𝜃√|𝐾2
𝑖|) + 𝐶6

𝑖𝑠𝑖𝑛 (𝜃√|𝐾2
𝑖|)) +

𝐾3
𝑖

2
(𝑡)2

−
𝐾3

𝑖

4
(𝜌)2 −

𝐾4
𝑖

2
(𝑙𝑛(𝜌))

2
+

𝐾4
𝑖

2
(𝜃)2 + 𝐶7

𝑖𝑡 + 𝐶8
𝑖𝑙𝑛(𝜌) + 𝐶9

𝑖𝜃 + 𝐶10
𝑖 ) 

(26) 

where 𝐾𝑗
𝑖 and 𝐶𝑗

𝑖 are real constants such that 𝐾1
𝑖 > 0 and 𝐾2

𝑖 < 0 and 𝐽𝑎(𝑥) and 𝑌𝑎(𝑥) are the Bessel 

functions of the first and second kinds respectively. The above equation of distribution is represented 

in Figure 5. 

 

Figure 5. Representation of the population distribution of relation 26 where darker areas correspond 

to higher density. a) Depiction of the population density along the radius 𝜌 for three instants of time 

𝑡1 < 𝑡2 < 𝑡3 (solid, dashed and dotted lines respectively) for √|𝐾2
𝑖| = 0. In the remaining figures the 
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3D depiction is shown for different values of the constants. b: √|𝐾2
𝑖| = 0,   c: √|𝐾2

𝑖| = 1, d: √|𝐾2
𝑖| =

2, e: √|𝐾2
𝑖| = 3. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 Source: Author’s representation 

 

 Both relations 21 and 26 share some important characteristics, namely the temporal behavior 

and the creation and regular arrangement of neighborhoods, although some difference between Figure 

4 and 5 can be observed, for example, in Figure 5(d) and 5(e), the urban grid (the arrangement of city 

blocks) is no longer Hippodamian bun centralized or radial, which inherits the possibility of creating 

any number (even or odd) of main (equally important) local centers in a polycentric city.  Indeed, in 

Figure 4(e) there can be exactly four main local centers, whereas by the application of relation 26, 

any number of main local centers can be created, as in Figure 5(d) (two centers) and in Figure 5(e) 

(three centers). It should be mentioned that the population distribution represented in all Figures 2, 3, 

4 and 5, are chosen to be centrally symmetrical since, without any geographical influences, this is the 

best approximation of most common field cases but, by the appropriate choice of the constants 𝐶𝑚
𝑖  in 

relations 21 and 26, more irregular forms can be derived. 
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 The heretofore presentation investigates only the building blocks (one dimensional inertial 

“system”) 𝑃𝑖 of the general system in relation 16, which, as mentioned in section 2, is derived by the 

transformation 𝑄𝑖 = 𝐵𝑘
𝑖 𝑃𝑘, where 𝐵𝑘

𝑖  are real constants. This last equation is open to several 

interpretations depending on the observer’s preferences, the first of which is a system of a single city 

inhabited by a group of 𝑁 populations, each of which can represent a population class (economic, 

cultural etc.) or zone (habitation, commercial, industrial, common etc.). Hence, the equation of 

distribution of each population is: 𝑄𝑖(𝑡, 𝑥, 𝑦) = 𝐵𝑘
𝑖 𝑃𝑘(𝑡, 𝑥, 𝑦) and the equation of distribution of total 

population of the city is given by the analytic expression: 

𝑄(𝑡, 𝑥, 𝑦) = ∑ (𝑄𝑖(𝑡, 𝑥, 𝑦))

𝑁

𝑖=1

= ∑ (∑(𝐵𝑘
𝑖 )

𝑁

𝑖=1

𝑃𝑘(𝑡, 𝑥, 𝑦))

𝑁

𝑘=1

 (27) 

where the geographic coordinates (𝑥, 𝑦) refer to the hypothetical city center (0,0) and each 𝑃𝑘(𝑡, 𝑥, 𝑦) 

or 𝑃𝑘(𝑡, 𝜌, 𝜃 ) are special case of relations 21 or 26 respectively. 

The linearity of relation 27 permits the deduction of the behavior of the city from that depicted 

in Figures 2, 3, 4 and 5, that is: 

 On the early stages of the city, there is not distinguished geographical separation between the 

different population zones. 

 As the city evolves, the geographical partition of the city becomes more and more prominent, 

forming interchangeable neighborhoods (areas) that are almost exclusively inhabited by a single 

population. 

 The intensification of the partition leads to the formation of multiple administration (multiple 

municipalities) and functional (economic or habitation) centers, thus creating purely 

multicentric cities. 

In Figure 6, the case of a single city, in advanced state of evolution, is depicted, consisting of two 

populations, namely 𝑄1 and 𝑄2, representing say two economic (income) classes of two zones 

(habitation and commercial), presented the partition of the geographic area. Figure 6 can be 

interpreted as describing one economic center (central pick of blue line, see Figure 6-d) and four 

municipalities (four picks of orange line, see Figure 6(e)). For reason of clarity, the distribution of 

each population is chosen to be as simple as possible and the geographical coordinates to be Cartesian, 

as in relation 21. 

 

Figure 6. a: Representation of a single city consisting of two populations 𝑄1 (blue line) and 𝑄2 

(orange line), so that the total population is 𝑄 = 𝑄1 + 𝑄2 (black line). b: 3D representation of the 

total population 𝑄. c: Contour map of only the population 𝑄1. d: Contour map of only the population 
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𝑄2. e: Contour map of the total population (union of the maps of Figures 6(c) and 6(d)). Darker areas 

correspond to higher density. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 Source: Author’s representation 

 

 Another interpretation of relation 16 is that of representing a system of multiple (𝑁) cities where 

each 𝑄𝑖 stands for the total population of each city and the hypothetical city center of each one has 

geographical coordinates (𝑋𝑖 , 𝑌𝑖). Then the equation of distribution of the system becomes: 

𝑄𝑖(𝑡, 𝑥 − 𝑋𝑖, 𝑦 − 𝑌𝑖) = 𝐵𝑘
𝑖 𝑃𝑘(𝑡, 𝑥 − 𝑋𝑖 , 𝑦 − 𝑌𝑖) (28) 

where the coordinates (𝑥, 𝑦) correspond to a randomly chosen “common center” of all cities and the 

functions 𝑃𝑖(𝑡, 𝑥, 𝑦) are given in relations 21 or 26. If the system is inertial or, at least its dynamic 

character is indetectable, its temporal behavior resembles that described in Figures 3, 4 or 5, namely, 

in the initial stages of the system the population density decreases monotonously as the distance from 

each city center increases and forms neighborhoods of high density in the advanced stage. In Figure 

7, a system of two cities is depicted, such that both the city centers (dashed lines) are positioned along 

the 𝑥 axis.  
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Figure 7. Representation of two comparable cities 𝑄1 (blue line) and 𝑄2 (orange line) and the total 

population of the system 𝑄 = 𝑄1 + 𝑄2 (black line). a: Early stage of the system, b: Contour map of 

Figure 7(a). c: Advanced stage of the system. d: Contour map of Figure 7(c). Darker areas correspond 

to higher density. The dashed vertical lines indicate the positions of the city centers. All figures have 

the same scale. 

(a) 

 

(b) 

                

(c) 

 

(d) 

 

 Source: Author’s representation 

 

It should be emphasized that Figures 7, especially Figure 7(d), representing relation 28, are 

simplified depictions of comparable cities, for reasons of clarity, so that the city blocks can be clearly 

distinguished and the infostructure (i.e. the transportation network) to be apparent, but in reality, as 

it can be shown in Figure 10, the neighborhoods of a system of multiple cities are not so regularly 

arranged. A system of disproportional cities, both quantitatively (size) and, more importantly 

qualitatively (wavelength and expansion) leads to irregularities along the border which is extended 

further into the area of the smaller city, as in Figure 8. 
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Figure 8. Representation of two disproportional cities 𝑄1 (blue line) and 𝑄2 (orange line) and the 

total population of the system 𝑄 = 𝑄1 + 𝑄2 (black line). a: Advanced stage of the system. b: Contour 

map of Figure 8(b), where darker areas correspond to higher density. The dashed vertical lines 

indicate the positions of the city centers. 

(a) 

 

(b) 

 

 Source: Author’s representation 

 

Except for disproportionality, another reason for the irregularities at the inner arrangement of a 

city lies on the main hypothesis of the constitutional equations of the linear systems in relation 18 

which is derived from relation 5. Indeed, it can be noticed that the condition for the population 

distribution to take the forms depicted in Figures 4, 5, 6 and 7, is that the geographical space, i.e. the 

habitat of the system to be flat, but, in reality, this is rarely the case. As can be seen in section 4, the 

shape of the city, that is the shape and the arrangement of the main city blocks, is uniquely determined 

by the topographical morphology of the habitat. A third reason is the burden of history and politics, 

which plays a profound role in shaping a city, since in the early stage of a city, the population 

distribution takes the form of Figures 3(c), 4(c), 5(b) or 6(e), that is, its behavior is mostly isotropic. 

The relatively low density, light traffic and the centralized socioeconomic state, favor the radial 

formation (see Figure 5), the Hippodamian formation of Classical Miletus being an exception rather 

than the rule, due to the destruction of the pre-Classical city and the special social structure of the 

Greek city-states. In a later period, the requirements originated from the high density and 

decentralization, lead to more orthonormal formations, as in Figures 3(e), 4(e), 6(e) or 7(d), hence the 

over time transition from polar to Cartesian formation, inevitably creates irregularities and 

disfunctions.  

 As mentioned in section 2, the dynamic character of a linear system represents the external 

action imposed on the system, the interaction between their components 𝑄𝑖 or both and is manifested 

by the existence of some complex eigenvalues 𝜆𝑖 (and their complex conjugates). If all the 
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eigenvalues are complex (so that the dimension 𝑁 of the system is an even number), then all the 

components 𝑃𝑖 will take the form of relation 14 and they will behave according to Figure 1(a). 

Consequently, all the components 𝑄𝑖 will vanish periodically, as linear combinations of 𝑃𝑖, leading 

to the unviability of the system after some short period of time. To be precise, the system will not 

vanish, but it will collapse in its previous form. Indeed, at the moment that the first component, say 

𝑄𝑁, vanish, the dimension of the system will change to 𝑁 − 1 and the matrix of the system in relation 

16 will be altered as a different (𝑁 − 1) × (𝑁 − 1) matrix from which new, odd in number, 

eigenvalues will derived, at least one of which will be real, thus transforming the resulting system to 

a viable one. 

 To demonstrate the behavior of a viable system, an example of a dynamic linear three-

dimensional system (three cities) is presented, with the dynamic components being 𝑃1 and 𝑃2, and 

the cities being 𝑄𝑖 (𝑖 = 1, 2, 3).  The equation of motion is derived by relations 12, 14 and 17 as: 

𝑄𝑖(𝑡) = 𝐵1
𝑖 𝐶1𝑒𝑥𝑝(𝛼1𝑡)𝑐𝑜𝑠(𝛽1𝑡) + 𝐵2

𝑖 𝐶2𝑒𝑥𝑝(𝛼1𝑡)𝑐𝑜𝑠(−𝛽 1𝑡) + 𝐵3
𝑖 𝐶3𝑒𝑥𝑝(𝜆3𝑡) (29) 

where 𝜆1 = 𝛼1 + 𝐼𝛽1, 𝜆2 = 𝛼1 − 𝐼𝛽1 and 𝜆3 are the eigenvalues of the system and 𝐵𝑘
𝑖   and 𝐶𝑖 are 

real constants. The application of relation 13, 15 and 18 produces the equation of distribution: 

𝑄𝑖(𝒙 − 𝒙𝑖) = 𝐵1
𝑖 𝑒𝑥𝑝 (𝑈𝑅𝑒

1 (𝒙 − 𝑿𝑖)) 𝑐𝑜𝑠 (𝑈𝐼𝑚
1 (𝒙 − 𝑿𝑖))

+ 𝐵2
𝑖 𝑒𝑥𝑝 (𝑈𝑅𝑒

1 (𝒙 − 𝑿𝑖)) 𝑐𝑜𝑠 (−𝑈𝐼𝑚
1 (𝒙 − 𝑿𝑖)) + 𝐵3

𝑖 𝑒𝑥𝑝 (𝑈3(𝒙 − 𝑿𝑖))  

such that ∆𝑈𝑖(𝒙) = 0 

(30) 

where (𝒙 − 𝑿𝑖) ≡ (𝑡, 𝑥 − 𝑋𝑖 , 𝑦 − 𝑌𝑖) are the geographical coordinates of the center of city 𝑖 and the 

functions 𝑈𝑖(𝒙) are contained in relation 21 (or, for polar coordinates, in relation 26). In Figure 9 the 

behavior of relations 29 and 30 are depicted, with some simplifications of reasons of clarity: 

 The two out of the three components are represented, 𝑄1 and 𝑄2, since the behavior of 𝑄3 is 

similar to the other two. 

 Similarly, in Figure 9(a) only the dynamic components 𝑃𝑖 are depicted, the third being an 

exponential function (see relation 30). 

 In Figures 9(c), 9(d), 9(e) and 9(f), the distributions are simplified, using the depictions of 

Figure 7(a) rather than that of Figure 7(c), since the representation is focused on the initial stage 

of the cities. 

Figure 9. Representation of relations 29 and 30, where 𝑃1, 𝑄1 (blue line), 𝑃2, 𝑄2 (orange line) and 

their sums (black) are depicted, at some geographical point. a: temporal behavior of the density of 

𝑃𝑖. b: temporal behavior of density 𝑄𝑖. Depiction of population distribution (along the axis 𝑥) of 𝑄𝑖 

for four instants (marked by dashed lines in Figures 9(a) and 9(b)), all on the same scale. c: at 4𝜋 7⁄ . 
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d: at 8𝜋 7⁄ . e: at 12𝜋 7⁄ . f: at 16𝜋 7⁄ . The dotted lines of the diagrams c, d, e and f correspond to the 

time 𝑡 = 0. 

(a) 

 

  (b) 

 

    (c) 

 

(d) 

 

  (e) 

 

    (f) 

 

 Source: Author’s representation 

 

 The behavior or a dynamic system, described in Figure 9 can be described as follows: 

 Although the dynamic components 𝑃1 and 𝑃2 vanish periodically (Figure 9(a)), the system is 

sustainable, meaning that no component 𝑄𝑖 vanish, due to the existence of the inertial 

exponential component 𝑃𝑖(𝑡) = 𝐶3𝑒𝑥𝑝(𝜆3𝑡) in relation 29 (not depicted in Figure 9). 

 In the early stages of the development of the system, the trigonometric terms of relation 30 play 

a prominent role but as the system progresses, the importance of the periodic character 

diminishes due to the exponential function of 𝑃3 as shown in Figure 9(b). 

 Hence, the temporal behavior of a dynamic system at an advanced stage of development is 

difficult to distinguish from the exponential growth of an inertial system, at least within the 

margin of measurement error. That is why, as a rule, the regressions of statistical data (i.e. see 

Bergmann (2019)) and most population models (see the references in section 1) use some form 
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of monotonous exponential function to describe the population evolution, as in relation 25, 

although most cities constitute dynamic systems. 

 A system of a single city with multiple populations (classes of zones) has an analogous temporal 

behavior like that of a system of multiple cities, as in Figure 9. 

 In Figure 10 the maps of some mainland cities are presented derived by Smith (2023), 

qualitatively comparable to some patterns examined in this section. Similar results, albeit not as 

extensive, can be found in Bergman (2019).  

 

Figure 10. Maps of mostly inland cities around the World, qualitatively comparable to Figures 3, 4, 

5, 6, 7 and 8, where sea (gray), land (white), lower density (blue), middle density (red) and high 

density (orange) are depicted. 
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Figure 10. (continued) 
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Some illustrative examples based on Figure 10 are the following:  

 In relatively newly founded cities like Colombus, Las Vegas, Minneapolis, Montreal and 

Riyadh (where extensible reconstructions of the older town took place in 1950s) the application 

of the Hippodamian (orthonormal) grid can be observed as in Figures 3(b), 4(b) or 6(b). Also, 

in Las Vegas and Montreal polycentricity can be detected. 

 In historical cities like Berlin, Bordeau and Paris, the almost monocentric radial grid appears, 

as described in Figure 5(b). 

 Other historical cities like Delhi, London, Moscow and Rome present a polycentric radial grid 

as in Figures 5(d) and 5(e). The city of Madrid has also a polycentric radial grid but more similar 

to Figure 5(c), having a large center of gravity to the right and a number of disperse centers to 

the left of the picture. 

 Systems of multiple historical cities like Ankara and Athens behave like Figure 7(d). The 

interesting cases of amalgamation of an old and new city, like Baghdad or Riyadh, can also be 

simulated as in Figure 7(d) with the distinction that in each case the old city follow the radial 

(left side of the picture in both cases) and the new city the Hippodamian (right side of the picture 

in both cases) grid.  

 Megalopolises like Sao Paolo include great diversities within their population, incorporate 

many development plans for different areas of the city so that the best classification is that of a 

multiple city rather than that of a polycentric city. 

A more detailed analysis and classification of a city requires the collection and processing of 

extensive statistical data about the density, not only of the total population but of their different 

components (classes or zones), for multiple points all over the city area and over a significant period. 

 

4. Morphology of the habitat 

Heretofore, the constitutional equation of distribution in relation 5 was constructed based in the 

assumption that the habitat of the system under examination does not affect the manner by which the  

population is distributed, so the spacetime of the habitat was considered as a Euclidean four-

dimensional space and, moreover, the usual base of the Euclidian space 𝒙 = {𝑥0 ≡ 𝑡, 𝑥1, 𝑥2, 𝑥3}, that 

is, time and the three Cartesian geographical coordinates, was sufficient for describing the behavior 

of the expansion of the system. This assumption facilitated the mathematical formulation of the model 

and, additionally, leads to a fairly adequate approximation of the behavior of many real-case 

population systems. The full generalization of the model for it to incorporate the effect of any 

topography of the habitat on the population system requires for the spacetime of the habitat to be not 

Euclidean but, in general, a Riemannian four-dimensional space having a usual base of the form: 𝒘 =
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{𝑤0 ≡ 𝑡, 𝑤1, 𝑤2, 𝑤3} and a metric form, referred to the usual base: (𝑑𝑠)2 = 𝛾𝜇𝜈𝑑𝑤𝜇𝑑𝑤𝜈, 𝜇, 𝜈 =

0,1,2,3, where the components of the metric tensor are functions of the components of the base 𝒘: 

𝛾𝜇𝜈 = 𝛾𝜇𝜈(𝒘). This formulation would lead to relation 5 of becoming overcomplicated, to the point 

that it would not be amenable to analytical solutions, even for the simplest cases of systems. 

 There are two tools by which the above situation can be manageable, the first of which is the 

simplification of the description of the habitat, by lessening the requirements for exact and/or 

extensive description of the topography. The spacetime of the habitat becomes a three-dimensional 

Euclidean space (time and two geographical coordinates) with the usual base 𝒙 = {𝑥0, 𝑥1, 𝑥2}, in 

which an admissible (continues and bijective) transformation to a curvilinear (still Euclidean) base 

𝒘 = {𝑤0 ≡ 𝑡, 𝑤1, 𝑤2} is applied, describing the variation of the topography. One further 

simplification is the consideration of this transformation to be orthogonal, so, finally, the simplified 

transformation takes the form of three bijective and continuous function of one variable: 𝑡 ≡ 𝑥0 ≡

𝑤0, 𝑥1 = 𝑥1(𝑤1) and 𝑥2 = 𝑥2(𝑤2). In this way, each geographical function can adequately describe 

the morphology of the habitat in a direction, along the longitudinal or the latitudinal line. One further 

calibration of the initial orientation of the base 𝒙 = {𝑥0, 𝑥1, 𝑥2} can be made, for the longitudinal and 

latitudinal lines to include the major topographical features of the habitat. 

 The second simplification tool is the reduction of the constitutional equation of distribution in 

relation 5. The equation of distribution for every inertial system in general and for all linear systems, 

both inertial and dynamic, is given by relations 5 and 13 respectively, as functions of the usual base 

of the system: 𝑄𝑖(𝒙) = 𝑒𝑥𝑝 (𝑈𝑖(𝒙)), where the function 𝑈𝑖 = 𝑈𝑖(𝒙) is a solution of the Laplace 

equation: ∆𝑈𝑖(𝒙) = 0, in the case of a flat habitat. Heretofore, for reason of brevity, both components 

𝑄𝑖 or relation 10 and 𝑃𝑖 of relation 13 will be symbolized as 𝑄𝑖. Evidently, the information of the 

topographical variation (from the flat plane) of the habitat it should be inserted into the constitutional 

equations via the Laplace equation, by the transformation from the base 𝒙 to the base 𝒘. The result 

of the necessary calculations is the following differential equation: 

∑ (
𝜕2𝑈𝑖(𝒙)

𝜕𝑥𝜇𝜕𝑥𝜇
)

2

𝜇=0

= 0 ⇒
𝜕2𝑈𝑖(𝒘)

𝜕𝑤0𝜕𝑤0
+ 

+ ∑ ((
𝑑𝑥𝜇(𝑤𝜇)

𝑑𝑤𝜇
)

−2
𝜕2𝑈𝑖(𝒘)

𝜕𝑤𝜇𝜕𝑤𝜇
− (

𝑑𝑥𝜇(𝑤𝜇)

𝑑𝑤𝜇
)

−3
𝑑2𝑥𝜇(𝑤𝜇)

(𝑑𝑤𝜇)2

𝜕𝑈𝑖(𝒘)

𝜕𝑤𝜇
)

2

𝜇=1

= 0 

(31) 

which is a reductive form of the Laplace – Beltrami equation (see for example Besse (1987) or Taylor 

(2011)). In this section the above relation is applied to two general examples, namely for cities built 

on uniformly inclined terrain and for cities constructed near the coastline (or any impenetrable 

barrier). 
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 The uniform inclination of the terrain can be simulated by the transformation: 

𝑥0 = 𝑤0 ≡ 𝑡, 𝑥1 = (𝐴 + 1)𝑤1, 𝑥2 = 𝑤2 (32) 

where 𝐴 ≥ 0 is real constant corresponding to the slope of the terrain. Hence, relation 25 becomes: 

𝜕2𝑈(𝒘)

𝜕𝑡𝜕𝑡
+

1

(𝐴 + 1)2

𝜕2𝑈(𝒘)

𝜕𝑤1𝜕𝑤1
+

𝜕2𝑈(𝒘)

𝜕𝑤2𝜕𝑤2
= 0 (33) 

a general solution of which is: 

𝑈(𝒘) = (𝐶1𝑒𝑥𝑝(𝑡√𝐾1) + 𝐶2𝑒𝑥𝑝(−𝑡√𝐾1)) (𝐶3𝑒𝑥𝑝 ((𝐴 + 1)𝑤1√𝐾2)

+ 𝐶4𝑒𝑥𝑝(−(𝐴 + 1)𝑤1√𝐾2)) (𝐶5𝑒𝑥𝑝(𝑤2√𝐾3) + 𝐶6𝑒𝑥𝑝(−𝑤2√𝐾3))

+
𝐾4

2
(𝑡)2 +

(𝐴 + 1)2𝐾5

2
(𝑤1)2 +

𝐾6

2
(𝑤2)2+𝐶7𝑡 + 𝐶8𝑤1 + 𝐶9𝑤2 + 𝐶10 

𝐾1 + 𝐾2 + 𝐾3 = 0 , 𝐾4 + 𝐾5 + 𝐾6 = 0 

(34) 

where 𝐾𝑖 and 𝐶𝑖 are real constants (different for each relation). 

 To specify the population distribution, some conditions concerning relation 34 could be 

considered: 

 If 𝑈(𝒘) is a solution of relation 34, the equation of distribution referred to the natural 

(population) base is given by the transformation: 𝑄(𝒘) = 𝑒𝑥𝑝(𝑈(𝒘)) of relation 10. 

 In the cased of 𝐴 = 0 in relations 32, 33 and 34 (no inclination of the terrain), the distribution 

of the population should behave in the same way to both directions 𝑤1 and 𝑤2. Therefore, in 

relation 34: 𝐾2 = 𝐾3 = − 𝐾1 2⁄  and 𝐾5 = 𝐾6 = − 𝐾4 2⁄  

 Any function of time 𝑡 must be uniformly monotonous, hence: 𝐾1 > 0. Moreover, the 

population density cannot increase indefinitely from the center outward, hence 𝐾4 > 0. 

The equation of distribution referred to the natural base becomes, after some rearrangement: 

𝑄(𝒘) = 𝑒𝑥𝑝 (𝐶1𝑒𝑥𝑝(𝑡√𝐾1)𝑐𝑜𝑠 ((𝐴 + 1)𝑤1√|𝐾1| 2⁄ + 𝐶2) 𝑐𝑜𝑠 (𝑤2√|𝐾1| 2⁄ + 𝐶3)

+
𝐾4

2
(𝑡)2 −

(𝐴 + 1)2𝐾4

4
(𝑤1)2 −

𝐾4

4
(𝑤2)2+𝐶4𝑡 + 𝐶5𝑤1 + 𝐶6𝑤2 + 𝐶7) 

(35) 

where 𝐶𝑖 and 𝐾𝑖 > 0 are real constants. It can be mentioned that, in case of 𝐴 = 0, relation 35 

describes a bidirectional horizontal terrain. Relation 35 is depicted in Figures 11 and 12. 
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Figure 11. Representation of relation 35 for a constat value of time. a: Population distribution along 

the axis 𝑤1 for 𝐴 > 0 (solid line) and 𝐴 = 0 (dashed line). b: Three-dimensions graph of Figure 11(a). 

(a) 

 

          (b) 

 

 Source: Author’s representation 

 

Figure 12. Contour plot for the population distribution of Figure 11(b), where darker areas represent 

higher density. a: 𝐴 > 0. b: 𝐴 = 0. 

             (a) 

 

             (b) 

 

 Source: Author’s representation 

 

 The next example deals with the existence of an impenetrable barrier (i.e. shoreline) beyond 

which no population can expand. An appropriate transformation should have the following 

characteristics: 

 It can be assumed, without a loss of generality, that this barrier occurs at the directions of the 

axis 𝑥1, hence the transformation can be given by an acceptable (reversible) function 𝑥1 =

𝑥1(𝑤1). 

 The domain of this function should be: 𝑤1 ∈ [−𝐿, +∞[, where 𝐿 is the (positive) distance of 

the barrier from the hypothetical center of the city and its range: 𝑥1 ∈ ]−∞, +∞[ (see Figure 

14-left). 
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 The function should be simple enough for relation 31 to produce an analytical solution. 

One of the many possible transformations satisfying the above conditions is the following: 

𝑥0 = 𝑤0 ≡ 𝑡, 𝑥1 = 𝐴𝑙𝑛(𝑤1 + 𝐿), 𝑥2 = 𝑤2 (36) 

which transforms relation 31 to: 

𝜕2𝑈(𝒘)

𝜕𝑡𝜕𝑡
+

(𝑤1 + 𝐿)2

𝐴2

𝜕2𝑈(𝒘)

𝜕𝑤1𝜕𝑤1
+

𝑤1 + 𝐿

𝐴2

𝜕𝑈(𝒘)

𝜕𝑤1
+

𝜕2𝑈(𝒘)

𝜕𝑤2𝜕𝑤2
= 0 (37) 

 The general solution of relation 37 is given by: 

𝑈(𝒘) = (𝐶1𝑒𝑥𝑝(𝑡√𝐾1) + 𝐶2𝑒𝑥𝑝(−𝑡√𝐾1)) (𝐶3𝑐𝑜𝑠ℎ (𝐴√𝐾2𝑙𝑛(𝑤1 + 𝐿))

+ 𝑖𝐶3𝑠𝑖𝑛ℎ (𝐴√𝐾2𝑙𝑛(𝑤1 + 𝐿))) (𝐶5𝑒𝑥𝑝(𝑤2√𝐾3) + 𝐶6𝑒𝑥𝑝(−𝑤2√𝐾3))

+
𝐾4

2
(𝑡)2 +

(𝐶7 + (𝐴)2𝐾5𝑙𝑛(𝑤1 + 𝐿))
2

2(𝐴)2𝐾5
+

𝐾6

2
(𝑤2)2+𝐶8𝑡 + 𝐶9𝑤2 + 𝐶10 

𝐾1 + 𝐾2 + 𝐾3 = 0 , 𝐾4 + 𝐾5 + 𝐾6 = 0 

(38) 

where 𝐾𝑖 and 𝐶𝑖 are real constants. As in the previous example, some constraints should be imposed 

to the final form of the equation of distribution: 

 For an inertial system, for every point of the habitat the equation of distribution should be a 

uniformly monotonous function of time, hence: 𝐾1, 𝐾4 > 0. 

 The population density should not continuously increase outward, hence: 𝐾5, 𝐾6 < 0. 

The equation of distribution is derived from 38 as: 

𝑄(𝒘) = 𝑒𝑥𝑝 ((𝐶1𝑒𝑥𝑝(𝑡√𝐾1)) 𝑐𝑜𝑠 (𝐴𝑙𝑛(𝑤1 + 𝐿)√|𝛫2| + 𝐶2) 𝑐𝑜𝑠 (𝑤2√|𝐾3| + 𝐶3)

+
𝐾4

2
(𝑡)2 +

(𝐶4 + (𝐴)2𝐾5𝑙𝑛(𝑤1 + 𝐿))
2

2(𝐴)2𝐾5
+

𝐾6

2
(𝑤2)2+𝐶5𝑡 + 𝐶6𝑤2 + 𝐶7) 

(39) 

In Figures 13 and 14, relation 39 is represented. In Figure 15 some large coastal cities are 

sampled, the behavior of which, pending terrain irregularities, resembles that of Figure 14, that is, 

high population density exists near the shoreline, the population density decreases towards the 

mainland and sporadic areas of higher density around the main concentration can be noticed. Also, 

as in the depictions of section 3, the population is regularly arranged in alternative areas of high and 

low density (neighborhoods) through the habitat. According to the boundary conditions of the 

simulation, smooth shoreline and terrain were chosen. 

 The mathematical simulation of the topography of the habitat (as a whole or in parts), as in 

relation 32 or 36 and, consequently, the derivations of the elementary population distributions, as in 

relations 35 or 39 respectively, can immediately determine the behavior of any linear system 
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expanded on an anomalous territory, by corresponding relations 35 or 39 to the building blocks 𝑃𝑖(𝒙) 

in relation 18. It should emphasize the limitations of the mathematical model presented in this section, 

leading to relation 31, that is the condition that it can be applied to general inertial systems and to 

linear systems both inertial and dynamic. Furthermore, the functions by which the topography of the 

habitat is simulated should be continuous and bijective and, also to be as simple as possible, for the 

differential equation of relation 31 to be amenable to analytical solution. 

 

Figure 13. a: Representation of the transformation of relation 36 (Black line) and the barrier at 𝑤1 =

−𝐿 (red line). b: Representation of the population distribution of relation 39 (black solid line), the 

barrier (red line) and the enveloping curve of the population distribution in the case of no barrier 

(black dashed line). 

(a) 

 

        (b) 

 

 Source: Author’s representation 

 

Figure 14. Representation of Figure 13(b), where darker areas represent higher density. a: Three-

dimensional plot. b: Contour map. 

             (a) 

 

              (b) 

 

 Source: Author’s representation 
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Figure 15. Maps of coastal cities around the World, qualitatively comparable to Figure 14, where sea 

(gray), land (white), lower density (blue), middle density (red) and high density (orange) can be 

observed. 
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5. Concluding remarks 

The fundamental element for the derivation of the equation of distribution of an inertial system or, as 

in the case the presents paper, of a linear system, both inertial and dynamic, is Laplace equation, 

applied to the usual base of the system, as indicated in relations 6 and 13. Since Laplace equation is 

a linear, elliptic, differential equation, for its solutions the principle of superposition is valid:  

∆𝑈𝑎(𝒙) = 0 ⇒ ∆ (∑ 𝐶𝑎𝑈𝑎(𝒙)

𝐴

𝑎=1

) = 0 (40) 
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where 𝐶𝑎 are real constants and 𝐴 is positive integer. Relation 40 permits the generalization of the 

elementary solutions of relations 21 and 26 as: 

𝑃𝑖(𝒙) = 𝑒𝑥𝑝 (∑ 𝐶𝑎𝑈𝑎(𝒙)

𝐴

𝑎=1

) ∶  ∆𝑈𝑎(𝒙) = 0 (41) 

The result of this generalization leads the population distribution to a far more complex and 

interesting behavior. For example, in Figure 16, the generalization of relation 21 is depicted for 𝐴 =

3, where Figure 16(b) provides more details and insight about the character and the structure of the 

city, than the corresponding Figure 3(b). 

 

Figure 16. Representation of the application of superposition to relation 21 for a constat value of 

time. a: Population distribution along the axis 𝑥. b: Contour map of Figure 16(a). 

(a) 

 

            (b) 

 

 Source: Author’s representation 

 

 Since the analytical model presented in Elias (2023) and summarized in section 1 was built by 

using only three fundamental axioms, common for Physical systems, it can be assumed, at least in 

theory, that the deduced equations of distributions provide the “natural’ way by which a population 

settles and expands, that is “from the bottom up”. An attempt to circumvent this natural distribution 

by some “from the top down” implementation can easily lead to discomfort, disfunctions or, even to 

failure, hence any model that provides such natural distribution can operate as an optimal control 

modulus for any administration planning, from the optimization of transportation network and zoning 

to the prediction of the behavior of inner cities. The existence of analytical equations of distributions 

can facilitate any optimization attempts by directly applying well-known methods of calculus of 

variations to the existing equations. 

 The linear population systems with constant coefficients provide the perfect balance between 

approximation of the real phenomenon and the volume of computations required for any 
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mathematical model to work. One significant benefit of linearity is that it facilitates the expansion of 

the model to include more cities of classes of populations, by the implementation of the simple 

addition operation. In the author’s opinion, the main disadvantage of linear systems is their inner 

difficulty in properly expressing the dynamic state. As presented in section 2, by the construction of 

linear systems, the dynamic influence alters the space of reference from Euclidean (inertial state) to 

Pseudo-Euclidean (dynamic state), instead of Riemannian, as in more general systems (see section 

1). Consequently, the constitutional equations include only trigonometric or products of trigonometric 

and exponential dynamic terms, leading the dynamic system to a binary behavior, either to vanish in 

a short period or, after some time, to grow exponentially (as if it was an inertial system), as described 

in relation 30 and Figure 9. 

 A more comprehensive perception of the dynamic behavior of the population can be achieved 

by the study of more general, non-linear systems. A class of such systems that presents analytical 

interest and practical importance is that of systems whose dynamic influence leads to sustainable 

behavior, that is of systems being in equilibrium with their environment. 
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