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Abstract 

In the present paper, an attempt is made to construct a deterministic mathematical simulation for 

population systems, by which their temporal (equation of motion) and spatiotemporal (equation of 

distribution) behaviour can be deduced, as solutions of the constitutional differential equations of the 

system. The generic formulation of the constitutional equations gives the simulation the possibility 

to expand to several populations, but also to parameters of different nature (say economic), by 

applying proper transformations according to the inner properties of each parameter. The introduction 

of the topographical features of such a system can be reduced to a boundary conditions problem, 

applied to the constitutional differential equations. Two initial applications are analyzed herein, 

namely a one-dimensional inertial population system, and a one-dimensional dynamic population 

system, where the external force corresponds to a space of constant curvature. The theoretically 

predicted behaviors of the population distribution of these systems are compared qualitatively to 

actual field data, collected from cities around the World.  
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1. Introduction 

There are many equations describing the population distribution of towns, cities or metropolitan areas, 

which relate the population density to the polar radius from the city center, i.e., the hypothetical or 

actual birth point of the city. One of the most recognized of these, is the equation suggested by Clark 

(1951), which provides both directness and experimental (statistical) validation: 

https://doi.org/10.61225/rjrs.2023.08
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𝑃(𝜌) = 𝑃(0)𝑒𝑥𝑝(𝐴𝜌) (1) 

where 𝑃 is the population density at a given radius 𝜌 ≥ 0 from the center of the city, the quantity 

𝑃(0) ≡ 𝑃(𝜌 = 0) in relations (1) (2) and (3) is the value of the population density of the city at the 

city center and 𝐴 < 0 is a real constant estimated empirically. This equation provides both simplicity 

of application (only two constants must be estimated from the statistical data) and experimental 

validation. Since then, the accumulation of statistical data has led to variations of relation (1), such 

as the modified Zielinski – Frankena equation in Martori and Surinach (2001)): 

𝑃(𝜌) = 𝑃(0)𝑒𝑥𝑝((𝐴𝜌 + 𝐵𝜌2 + 𝐶𝜌3)𝜌𝐷) (2) 

where 𝐴, 𝐵, 𝐶 and 𝐷 are real constants estimated empirically. Most of these equations have the 

following general form: 

𝑃(𝜌) = 𝑃(0)𝑒𝑥𝑝 ( ∑ (𝐶𝑚𝜌𝑚)

𝑀

𝑚=0

) (3) 

where 𝑚 and 𝑀 are integers and 𝐶𝑚 are real constants estimated empirically, as presented in Zielinski 

(1980), Anselyn and Can (1986), Martori and Surinach (2001) or Griffith and Wang (2007). An 

extensive work by Bertaud and Malpezzi (2003) with the cooperation of the World Bank, includes 

the field data from forty-eight major cities around the World in the form of graphs (density versus 

radius) and approximates the data with an exponential function as in relation (1). Some of these graphs 

are included herein, as a qualitative correlation between the field data and the theoretically derived 

equations. 

 Recent models proposed various equations for population density as a function of the polar 

radius: 𝑃 = 𝑃(𝜌), some of which are special cases of relation (3). An extensive survey with field data 

collected from the fifty largest cities of the world (comparable to the work of Bertaud and Malpezzi) 

made by Subasinghe, Wang and Murayama (2022), proposed the categorization of the above cities 

into five distinct categories with respect to the following equations: 

𝑃(𝜌) = 𝛢𝑒𝑥𝑝(𝛣𝜌) 

𝑃(𝜌) = 𝛢(𝜌)𝛣 

𝑃(𝜌) = 𝐴𝑒𝑥𝑝 (− (
𝜌 − 𝐵

𝐶
)

2

) 

(4) 

where 𝐴, 𝐵 and 𝐶 are real constants estimated empirically (the first equation includes three categories 

with different values of the real constants). 

 Other works, instead of performing a global survey, focus on a specific area, including one of 

several nearby cities, but collect the data of the same research subject at different instants of time, 

although the approximating equations do not include the variable of time, but vary the constants for 
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each instant. The work by Khatun, Falgunee and Kutub (2015), study the Dhaka Metropolitan Area 

in 2001 and 2011 by proposing the following equations: 

𝑃(𝜌) = 𝐴𝑒𝑥𝑝(−𝐵𝜌) 

𝑃(𝜌) = −𝐴𝑙𝑛(𝜌) + 𝐵 

𝑃(𝜌) = −𝐴(𝜌)2 + 𝐵𝜌 + 𝐶 

(5) 

where 𝐴, 𝐵 and 𝐶 are real constants estimated empirically. Also, Feng and Chen (2021) study the city 

of Hangzhou, China in the years 1964, 1982, 1990, 2000 and 2010 by using three of the equations 

proposed by Khatun, Falgunee and Kutub (2015) and adding three new: 

𝑃(𝜌) = −𝐴𝜌 + 𝐵 

𝑃(𝜌) = 𝐴𝑒𝑥𝑝(−𝐵𝜌) 

𝑃(𝜌) = −𝐴𝑙𝑛(𝜌) + 𝐵 

𝑃(𝜌) = −𝐴(𝜌)−𝐵 

𝑃(𝜌) = 𝐴𝑒𝑥𝑝 (−𝐵(𝑙𝑛(𝜌))
2

) 

𝑃(𝜌) = 𝐴𝑒𝑥𝑝(−𝐵(𝜌)𝐶) 

(6) 

where 𝐴, 𝐵 and 𝐶 are real constants estimated empirically. For the study of ten cities of Liaoning 

Province, China, Guo and Wang (2022), introduce the inverse sigmoid equations: 

𝑃(𝜌) =
1 − 𝐴

1 + 𝑒𝑥𝑝 (𝐵 (
2𝜌
𝐶

− 1))

+ 𝐴 
(7) 

where 𝐴, 𝐵 and 𝐶 are real constants estimated empirically. A more holistic survey is given by  

Bergmann (2019), in the sense that it contains thirteen large cities around the World (Europe, 

America, Asia) and for each, the field data are given (density versus polar radius) for four instants, in 

the years 1975, 1990, 2000 and 2015. The data are approximated by the Clark equation (1). In all the 

above cases, one can observe that for the same research subject (city), the approximating equation 

differs for every instant of time, quantitatively (same equation with different constants) or even 

qualitatively (altogether different equation) to counterbalance the absence of time as an independent 

variable. 

 An equation producing the population density as a function of the polar radius, as in relation 

(2) and all the others mentioned above, incorporates some presumptions concerning the phenomenon 

of population distribution, that may facilitate the construction of a functional model, but can, 

occasionally, present some limitations for understanding its behavior: 

• The independence of the population density equation from time, limits the possibility of 

evolutionary study of the phenomenon, since the homogeneous increase of the population 

density at every point of a city, following a past pattern, cannot be always the case. 
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• By the dependence of the equation on the polar radius only, an assumption has been made of 

an isotropic propagation of the phenomenon, which is only valid in the case of the absence of 

directed significant external influences, that is, geographic variations, resources, other cities, 

etc. Even in the case of the absence of external influences, the behavior of a homogeneous 

distribution should be examined without the presumption of isotropy. 

• A statistically derived equation cannot be easily amenable to qualitative analysis, nor can be 

expanded to include external influences, multiple populations, or variables of different nature, 

say various demographic of economic parameters. 

 The above concerns lead to the pursuit of some function of the general form: 

𝑃 = 𝑃(𝑡, 𝑥, 𝑦, 𝑧) → 𝑃(𝑡, 𝑥, 𝑦) → 𝑃(𝑡, 𝜌) (8) 

which can be reduced to a function 𝑃 = 𝑃(𝜌), only as a special case and for a specific instant in time. 

Furthermore, an attempt has been made to construct a mathematical model which could analytically 

deduce such equations by using the minimum number of axiomatic principles. This paper does not 

present such a complete model, only some essential parts which can lead to generalization, that is the 

derivation of the constitutional equations, its solutions in the case of one-dimensional inertial 

population system, a notion of interacting population systems and a special case of a dynamic system, 

namely one influenced by a force of constant curvature. Apart from papers relevant to Regional 

Science (some of which are mentioned above), principles of Classical and Relativistic Mechanics 

were used, albeit applied to a different space of reference. Indeed, all the important objects needed 

for the creation of a population model were treated here: the events, the path, the state and the action. 

Some of the textbooks used from the latter category include Gelfand and Fomin (1963), Smirnov 

(1964), Landau and Lifshitz (1980), Dodson and Poston (1997), Francoise, Nabel and Tsun (2006), 

Itskov (2007), Talman (2007) and Bourles (2019). 

 

2. Description of the general model 

In creating the space of reference of the model, one can primarily observe that the geographic space 

and time of Classical of Relativistic Mechanics is not suitable for this purpose, since some variation 

of the spatial or temporal coordinates cannot, by themselves, cause any variation of the system. 

Indeed, in the case of a truly isolated city, its location and foundation time do not affect the character 

of its evolution and expansion, as long the morphological and climatological conditions remain the 

same. As for these conditions, they are independent of the geographical coordinates and can be 

introduced to the constitutional equations as a boundary value problem. On the contrary, the 

parameters mentioned above, that is populations, demographics, economy, etc., do affect the system, 

hence, some of them could constitute the space of reference of the model.  
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 Although the number and the nature of these parameters are not yet determined, one can assume 

that there exists a set of 𝑁 such parameters that are linearly independent to each other and, at the same 

time, they can adequately describe the behavior of the system, say: 𝑸 = {𝑄1, … , 𝑄𝑁}. Such a set can 

be one of the bases of an 𝑁-dimensional Riemannian (in general) space ℛ𝑁 which has a metric form: 

(𝑑𝑠)2 = 𝑔𝑖𝑗(𝑄1, … , 𝑄𝑁)𝑑𝑄𝑖𝑑𝑄𝑗  , 𝑖, 𝑗 = 1, … , 𝑁 (9) 

where 𝑑𝑠 is the elementary arc length of any line imbedded into ℛ𝑁 and 𝑔𝑖𝑗 = 𝑔𝑖𝑗(𝑄1, … , 𝑄𝑁) are 

the 𝑁 × 𝑁 components of the metric tensor for the base 𝑸. 

 

Figure 1. Representation of the essential objects of the model. 

 

 

 Source: Author’s representation 

 

 By adopting ℛ𝑁 as the space of reference of the system, every event 𝑸 = (𝑄1, … , 𝑄𝑁) of the 

system corresponds to a point of ℛ𝑁, so that the path of the system between two events can be 

described by the trajectory line 𝑸(𝑠) = (𝑄1(𝑠), … , 𝑄𝑁(𝑠)) embedded into ℛ𝑁. Furthermore, the 

equation of motion 𝑸(𝑡) = (𝑄1(𝑡), … , 𝑄𝑁(𝑡)) and the equation of distribution 𝑸(𝑥) =

(𝑄1(𝒙), … , 𝑄𝑁(𝒙)) of the system have both homomorphic relation to the trajectory. Please note that: 

• the time is symbolized as 𝑡 ≡ 𝑥0 and the four coordinates of time and geographic space as 𝒙 =

(𝑥0, 𝑥1, 𝑥2, 𝑥3) and constitute the usual (Pythagorean) base of the 4-dimensional Euclidean 

space ℰ4 of the habitat (plus time) of the system, 

• the indexes corresponding to ℛ𝑁 are symbolized by lower-case Latin letters and take values 

from 1 to 𝑁 and the indexes to ℰ4, by lower-case Greek letters having values from 0 to 3. 

Each component of the equation of motion is connected by the corresponding component of the 

equation of distribution via a density relation: 
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𝑄𝑖(𝑥0) = ∫ 𝑄𝑖(𝒙)𝑑𝛷

𝛷(𝑥0)

, 𝑑𝛷 = 𝑑𝑥1𝑑𝑥2𝑑𝑥3 ∶ 𝑖 = 1, … , 𝑁 (10) 

where 𝛷(𝑡) is the geographic volume (or surface) of the habitat of the system, which can vary with 

time. 

 To a system to be deterministic, its Lagrangian (its state) is given by a general function:  

𝐿 = 𝐿 (𝑄1(𝑡), … , 𝑄𝑁(𝑡),
𝑑𝑄1(𝑡)

𝑑𝑡
, … ,

𝑑𝑄𝑁(𝑡)

𝑑𝑡
) = 𝐿 (𝑸(𝑡),

𝑑𝑸(𝑡)

𝑑𝑡
) (11) 

so as to include not only the event of the system for every instant, but also the tendency for the event 

that will follow at the next instant. Consequently, its Lagrangian density is given by: 

𝛬 = 𝛬 (𝑸(𝒙),
𝜕𝑸(𝒙)

𝜕𝑥𝜇
) (12) 

 hence, according to relation (10), the connection between the two expressions of the Lagrangian is 

given by: 

𝐿 (𝑸(𝑥0),
𝑑𝑸(𝑥0)

𝑑𝑥0
) = ∫ 𝛬 (𝑸(𝒙),

𝜕𝑸(𝒙)

𝜕𝑥𝜇
) 𝑑𝛷

𝛷(𝑥0)

, 𝑑𝛷 = 𝑑𝑥1𝑑𝑥2𝑑𝑥3 (13) 

The necessity of using a second axiom in constructing the model (the first being the determination of 

the space of reference as a Riemannian space), is the relation of the trajectory to the space itself.  For 

that, all the intermediate states by which the system goes through between some initial and final state, 

should be considered, that is the total imprint (the existence) of the system between any initial 𝑡𝐴 and 

final 𝑡𝐵 moment of time, namely the action of the system. The uniqueness of the action of a system 

could be guaranteed by considered it to take a stationary value:  

𝑆 = ∫ 𝐿 (𝑸(𝑡),
𝑑𝑸(𝑡)

𝑑𝑡
) 𝑑𝑡

𝑡𝐵

𝑡𝐴

⇒ 𝛿𝑆 = 𝛿 ∫ 𝐿 (𝑸(𝑡),
𝑑𝑸(𝑡)

𝑑𝑡
) 𝑑𝑡

𝑡𝐵

𝑡𝐴

= 0 (14) 

If the Lagrangian is expressed by a positive definite quadratic form, so that 𝐿(𝑡) > 0 ∀𝑡, this 

stationary value is a minimum. In this case, it can be noticed that: 𝛿(𝐿(𝑡))
2

= 2𝐿(𝑡)𝛿𝐿(𝑡) and 

𝛿𝛿(𝐿(𝑡))
2

= 𝛿(2𝐿(𝑡)𝛿𝐿(𝑡)) = 2(𝛿𝐿(𝑡))
2

+ 2𝐿(𝑡)𝛿𝛿𝐿(𝑡), hence: 

𝛿𝐿(𝑡) = 0 ⇔ 𝛿(𝐿(𝑡))
2

= 0 ∧  𝛿𝛿𝐿(𝑡) > 0 ⇔ 𝛿𝛿(𝐿(𝑡))
2

> 0 (15) 

By its nature, the Lagrangian must be a geometric object of the space of reference, since the state of 

the system should be totally described by means of ℛ𝑁 and in a manner independent to the choice of 

the observer and finally, it needs to be a differential of the first order. Since the only such object is 

the elementary length of the trajectory, it can be deduced, by using relations (10) and (15), that: 
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𝛿𝑆 = 𝛿𝑚 ∫ 𝑑𝑠

𝑠𝐵

𝑠𝐴

= 𝛿𝑚 ∫ ( 𝑔𝑖𝑗(𝑸)
𝑑𝑄𝑖

𝑑𝑠

𝑑𝑄𝑗

𝑑𝑠
) 𝑑𝑠

𝑠𝐵

𝑠𝐴

= 0 (16) 

where 𝑚 is a real constant. The application of the Euler-Lagrange equations to relation (16) produces 

the equation of the trajectory which coincides to the geodesics of ℛ𝑁: 

𝑑2𝑄𝑖(𝑠)

(𝑑𝑠)2
+ 𝛤𝑗𝑘

𝑖 𝑑𝑄𝑗(𝑠)

𝑑𝑠

𝑑𝑄𝑘(𝑠)

𝑑𝑠
= 0 , 𝑖 = 1, … , 𝑁 

𝛤𝑗𝑘
𝑖 =

1

2
𝑔𝑖𝑚 (

𝜕𝑔𝑚𝑗

𝜕𝑄𝑘
+

𝜕𝑔𝑚𝑘

𝜕𝑄𝑗
−

𝜕𝑔𝑗𝑘

𝜕𝑄𝑚
) 

(17) 

where the quantities 𝛤𝑗𝑘
𝑖 ≡ {

𝑖
𝑗𝑘

} are the components of the Christoffel symbol of the second kind, 

following the symbolism use in Physics (i.e., Landau and Lifshitz (1980) or Talman (2007)). 

Simultaneously, relations (14) and (16) produce the expression of Lagrangian which, by expanding 

it to a Taylor series, becomes:  

𝐿 = 𝑚
𝑑𝑠

𝑑𝑡
→ 𝐿 =

1

2
𝑚 𝑔𝑖𝑗(𝑸)

𝑑𝑄𝑖

𝑑𝑡

𝑑𝑄𝑗

𝑑𝑡
 (18) 

The application of the Euler-Lagrange equation to relation (18) produces the constitutional equation 

of motion of the system: 

𝑑2𝑄𝑖(𝑡)

(𝑑𝑡)2
+ 𝛤𝑗𝑘

𝑖 𝑑𝑄𝑗(𝑡)

𝑑𝑡

𝑑𝑄𝑘(𝑡)

𝑑𝑡
= 0 , 𝑖 = 1, … , 𝑁 (19) 

and furthermore, establishes the homomorphic (linear) transformation between 𝑠 and 𝑡. 

 The action of the system can be also expressed by its Lagrangian density in relation (13): 

𝑆 = ∫ ∫ 𝛬 (𝑸(𝒙),
𝜕𝑸(𝒙)

𝜕𝑥𝜇
)

𝛷(𝑡)

𝑑𝛷𝑑𝑡

𝑡𝐵

𝑡𝐴

⇒ 𝛿𝑆 = 𝛿 ∫ 𝛬 (𝑸(𝒙),
𝜕𝑸(𝒙)

𝜕𝑥𝜇
) 𝑑𝛺

𝛺𝐵

𝛺𝐴

= 0 (20) 

where 𝑑𝛺 = 𝑑𝑥0𝑑𝑥1𝑑𝑥2𝑑𝑥3 is the four-volume of ℰ4, in its usual base. The derivation of the 

Lagrangian density is produced in the same manner as the Lagrangian of relation (18), by noticing 

that all the inner products of the unit vectors of ℰ4 are 𝑑𝑥𝜇𝑑𝑥𝜆 = 𝛿𝜇𝜆. 

𝛬 =
1

2
𝑚 𝑔𝑖𝑗(𝑸)

𝑑𝑄𝑖

𝑑𝛺

𝑑𝑄𝑗

𝑑𝛺
⇒ 𝛬 =

1

2
𝑚 𝑔𝑖𝑗(𝑸)

𝜕𝑄𝑖

𝜕𝑥𝜇

𝜕𝑄𝑗

𝜕𝑥𝜇
 (21) 

The application of Euler-Lagrange equations to (21), leads to the constitutional equation of 

distribution of the system: 

𝜕2𝑄𝑖(𝒙)

𝜕𝑥𝜇𝜕𝑥𝜇
+ 𝛤𝑗𝑘

𝑖 𝜕𝑄𝑗(𝒙)

𝜕𝑥𝜇

𝜕𝑄𝑘(𝒙)

𝜕𝑥𝜇
= 0 , 𝑖 = 1, … , 𝑁 (22) 

 Until now, the only unknown factor of equations (19) and (22) are the components of the metric 

tensor of ℛ𝑁, which can be determined by the principle of Equivalence (the third axiom), which states 

that the external influence (force) acting on a system is equivalent to a corresponding curvature of its 
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reference, in such a manner that an inertial system (with no force acting on it) has zero curvature and 

its space of reference is reduced to a N-dimensional Euclidean space. The curvature of space is 

expressed by the Riemann-Christoffel tensor: 

𝑅𝑗𝑘𝑚
𝑖 =

𝜕𝛤𝑗𝑚
𝑖

𝜕𝑄𝑘
−

𝜕𝛤𝑗𝑘
𝑖

𝜕𝑄𝑚
+ 𝛤𝑛𝑘

𝑖 𝛤𝑗𝑚
𝑛 − 𝛤𝑛𝑚

𝑖 𝛤𝑗𝑘
𝑛 (23) 

so that in the case of a Euclidian space, there is a base, namely the usual base 𝑼 = {𝑈1, … , 𝑈𝑁}, where 

the components of the metric tensor take the form: 𝑔𝑖𝑗(𝑼) = 𝛿𝑖𝑗 and, when referred in the usual base, 

𝛤𝑗𝑘
𝑖 = 0 and 𝑅𝑗𝑘𝑚

𝑖 = 0. Therefore, for an inertial system, when referred in the usual base, the 

components of the equation of motion reduce to the following linear equations: 

𝑑2𝑈𝑖(𝑡)

(𝑑𝑡)2
= 0 ⇒ 𝑈𝑖(𝑡) = 𝐴𝑖𝑡 + 𝐵𝑖, 𝑖 = 1, … , 𝑁 (24) 

where 𝐴𝑖 and 𝐵𝑖 are real constants. Moreover, the components of the equation of distribution are 

given as solutions of the four-dimensional Laplace equation: 

∑
𝜕2𝑈𝑖(𝒙)

𝜕𝑥𝜇𝜕𝑥𝜇

3

𝜇=0

= 0 , 𝑖 = 1, … , 𝑁 (25) 

Evidently, all the components of the equation of motion of an inertial system, for any acceptable base, 

are uniformly monotonic functions of time. 

 

3. The special case of one-dimensional inertial population system 

 An N-dimensional population system in general, can be defined by the Kolmogorov equations: 

𝑑𝑄𝑖(𝑡)

𝑑𝑡
= 𝑓𝑖(𝑄1(𝑡), … , 𝑄𝑁(𝑡)), 𝑖 = 1, … , 𝑁 (26) 

that is, there is some base of its space of reference, namely the natural base 𝑸 = {𝑄1, … , 𝑄𝑁}, so that 

when the components of the equation of motion are described in this base, would be solutions of 

relation (26). In the case of a one-dimensional inertial system, one can assume, for simplicity, that 

the equation of motion is reduced to the Malthus equation: 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝐴𝑄(𝑡) (27) 

where 𝐴 is a real constant. Since the system is inertial, there is another base, namely the usual base, 

by which the equation of motion takes the linear form: 𝑈(𝑡) = 𝐴𝑡 + 𝐵, hence the usual and the natural 

base of the system are connected by the following acceptable transformation: 

𝑄(𝑈) = 𝑒𝑥𝑝(𝑈) ⇔ 𝑈(𝑄) = 𝑙𝑛(𝑄) , ∀𝑄 > 0 (28) 

Therefore, the complexity of the differential equations leading to the equation of distribution, as 

described by the natural base, is reduced considerably: 
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∑
𝜕2𝑈(𝒙)

𝜕𝑥𝜇𝜕𝑥𝜇

3

𝜇=0

= 0 ⇒ 𝑄(𝒙) = 𝑒𝑥𝑝(𝑈(𝒙))  (29) 

In the remainder of this paragraph some partial solutions of relation (29) are presented which are 

compared to field statistical data collected for varies cities around the World. The graphic 

representations of these data were taken from the paper by Bertaud and Malpezzi (2003), supported 

by the World Bank. This data connects the population density for each city with a polar radius, taken 

at some fixed instant of time (the exponential regression lines incorporated in the graphs of the cities 

are calculated by the initial authors). 

 By assuming that the distribution of the population density, remains unchanged for all azimuthal 

angles, an isotropic partial solution of relation (29) is derived. In this case, the equation of distribution 

is given by a function of the form: 𝑄 = 𝑄(𝑡, 𝜌) and relation (29) becomes: 

𝜕2𝑈(𝑡, 𝜌)

𝜕𝑡𝜕𝑡
+

𝜕2𝑈(𝑡, 𝜌)

𝜕𝜌𝜕𝜌
+

1

𝜌

𝜕𝑈(𝑡, 𝜌)

𝜕𝜌
= 0 (30) 

A solution of relation (30) is derived by considering 𝑈(𝑡, 𝜌) = 𝑓(𝑡) + 𝑔(𝜌), so that: 

𝑑2𝑓(𝑡)

(𝑑𝑡)2
− 𝐾 = 0 ⇒ 𝑓(𝑡) =

𝐾

2
(𝑡)2 + 𝐶1𝑡 + 𝐶2 

𝑑2𝑔(𝜌)

(𝑑𝜌)2
+

1

𝜌

𝑑𝑔(𝜌)

𝜕𝜌
+ 𝐾 = 0 ⇒ 𝑔(𝜌) = −

𝐾

4
(𝜌)2 + 𝐶3𝑙𝑛(𝜌) + 𝐶4 

 

where 𝐾 and 𝐶𝑚 are random real constants and the equation of distribution for the natural base 

becomes: 

𝑄(𝑡, 𝜌) = 𝑒𝑥𝑝(𝐶2 + 𝐶4)(𝜌)𝐶3𝑒𝑥𝑝 (
𝐾

2
(𝑡)2 + 𝐶1𝑡 −

𝐾

4
(𝜌)2)  

 The first observation for the above relation is that at the point 𝜌 = 0, the population density at 

this point becomes zero or infinity for all instants of time, therefore the corresponding constant should 

take the value 𝐶3 = 0 ⇒ (𝜌)0 = 1. Moreover: 𝑄(0,0) = 𝑒𝑥𝑝(𝐶2 + 𝐶4), so that the final form of the 

equation of distribution becomes: 

𝑄(𝑡, 𝜌) = 𝑄(0,0)𝑒𝑥𝑝 (
𝐾

2
(𝑡)2 + 𝐶𝑡 −

𝐾

4
(𝜌)2) (31) 

where 𝐾 and 𝐶 are real constants estimated empirically, simulating the behavior of relation (1) and 

(3). Indeed, it can be noticed that for some fixed instant of time, relation (31) takes the form: 

𝑄(𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝜌) = 𝑄(𝜌 = 0)𝑒𝑥𝑝(𝐶1(𝜌)2 + 𝐶2) which, with the proper choice of the real 

constants 𝐶 and 𝐾, its behavior approximates relation (1), for middle range values of the radius 

and, also, coincides to the general relation (3) by giving the index 𝑚 the values 𝑚 = 0, 2.  
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Figure 2. Representation of relation (31) for 𝑄(0,0) > 0, 𝐾 > 0 and 𝐶 ≥ 0. Three values of time 

𝑡1 > 𝑡2 > 𝑡3 are depicted, with solid, dashed and dotted lines respectively, where 𝜌 is the polar radius 

and 𝑄 = 𝑄(𝑡, 𝜌) is the population density (right: 3D distribution for some fixed time). 

  

 Source: Author’s representation 

 

 

Figure 3. Field data of various cities connecting polar radius to population density, approximating a 

solution where relation (31) and Figure 2 is predominant. 

   

   

 Source: Bertaud and Malpezzi (2003) 
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Figure 3 (continued). Field data of various cities connecting polar radius to population density, 

approximating a solution where relation (31) and Figure 2 is predominant. 

   

   

   

 Source: Bertaud and Malpezzi (2003) 

 

 Another solution of relation (30) is derived by considering 𝑈(𝑡, 𝜌) = 𝑓(𝑡)𝑔(𝜌), so that: 

𝑑2𝑓(𝑡)

(𝑑𝑡)2
− 𝐾𝑓(𝑡) = 0 ⇒ 𝑓(𝑡) = 𝐶1𝑒𝑥𝑝(𝑡√𝐾) + 𝐶2𝑒𝑥𝑝(−𝑡√𝐾) 

𝑑2𝑔(𝜌)

(𝑑𝜌)2
+

1

𝜌

𝑑𝑔(𝜌)

𝜕𝜌
+ 𝐾𝑔(𝜌) = 0 ⇒ 𝑔(𝜌) = 𝐶3𝐽0(𝜌√𝐾) + 𝐶4𝑌0(𝜌√𝐾) 

 

where 𝐾 and 𝐶𝑚 are real constants estimated empirically and the equation of distribution for the 

natural base becomes: 

𝑄(𝑡, 𝜌) = 𝑒𝑥𝑝(𝐶1𝑒𝑥𝑝(𝑡√𝐾)𝐽0(𝜌√𝐾) + 𝐶2𝑒𝑥𝑝(−𝑡√𝐾)𝐽0(𝜌√𝐾) + 

+ 𝐶3𝑒𝑥𝑝(𝑡√𝐾)𝑌0(𝜌√𝐾) + 𝐶4𝑒𝑥𝑝(−𝑡√𝐾)𝑌0(𝜌√𝐾)) 
(32) 

The choices of the constants lead to two distinct behaviors for the population distribution: 

𝑄(𝑡, 𝜌) = 𝑒𝑥𝑝 (𝐶1𝑒𝑥𝑝(𝑡√𝐾)𝐽0(𝜌√𝐾)) (33) 
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where 𝐽0(𝜌√𝐾) is the Bessel function of the first kind with integer number 0, and 

𝑄(𝑡, 𝜌) = 𝑒𝑥𝑝 (𝐶1𝑒𝑥𝑝(𝑡√𝐾)𝑌0(𝜌√𝐾)) (34) 

where 𝑌0(𝜌√𝐾) is the Bessel function of the second kind with integer number 0.  

 

Figure 4. Representation of relation (33) for 𝐶1 > 0 and 𝐾 > 0. Three values of time 𝑡1 > 𝑡2 > 𝑡3 

are depicted, with solid, dashed and dotted lines respectively, where 𝜌 is the polar radius and 𝑄 =

𝑄(𝑡, 𝜌) is the population density (right: 3D distribution for some fixed time). 

  

 Source: Author’s representation 

 

Figure 5. Field data of various cities connecting polar radius to population density, approximating a 

solution where relation (33) and Figure 4 is predominant. 

   

   

 Source: Bertaud and Malpezzi (2003) 
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Figure 5 (continued). Field data of various cities connecting polar radius to population density, 

approximating a solution where relation (33) and Figure 4 is predominant. 

   

 Source: Bertaud and Malpezzi (2003) 

 

Figure 6. Representation of relation (34) for 𝐶1 > 0 and 𝐾 > 0. Three values of time 𝑡1 > 𝑡2 > 𝑡3 

are depicted, with solid, dashed and dotted lines respectively, where 𝜌 is the polar radius and 𝑄 =

𝑄(𝑡, 𝜌) is the population density (right: 3D distribution for some fixed time). 

  

 Source: Author’s representation 

 

Figure 7. Field data of various cities connecting polar radius to population density, approximating a 

solution where relation (34) and Figure 6 is predominant. 

   

 Source: Bertaud and Malpezzi (2003) 

 



 53 

 

Figure 7 (continued). Field data of various cities connecting polar radius to population density, 

approximating a solution where relation (34) and Figure 6 is predominant. 

   

   

   

  

 

 Source: Bertaud and Malpezzi (2003) 

 

It can be noticed that relation (32), as well as relations (33) and (34), when restricted to a constant 

instant of time: 𝑄 = 𝑄(𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝜌), appear to have similar behavior to the general equation of 

relation (3), for some small intervals of the polar radius. Indeed, the polynomial function of the 

exponent of relation (3) approximate the wave-like behavior of the Bessel functions for a small 

interval of the polar radius. This approximation is analogous to the Taylor series expansion of a 

trigonometric function.  
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 A set of partial solutions of relation (29) is produced by emphasizing the homogeneous 

character of population in a two-dimensional geographic space, so that relation (29) takes the form: 

𝜕2𝑈(𝑡, 𝑥, 𝑦)

𝜕𝑡𝜕𝑡
+

𝜕2𝑈(𝑡, 𝑥, 𝑦)

𝜕𝑥𝜕𝑥
+

𝜕2𝑈(𝑡, 𝑥, 𝑦)

𝜕𝑦𝜕𝑦
= 0 (35) 

A solution of relation (35) can be of the form: 𝑈(𝑡, 𝑥, 𝑦) = 𝑓(𝑡) + 𝑔(𝑥) + ℎ(𝑦): 

𝑑2𝑓(𝑡)

(𝑑𝑡)2
− 𝐾1 = 0 ⇒ 𝑓1(𝑡) =

𝐾1

2
(𝑡)2 + 𝐶1𝑡 + 𝐶2 

𝑑2𝑔(𝑥)

(𝑑𝑥)2
− 𝐾2 = 0 ⇒ 𝑔(𝑥) =

𝐾2

2
(𝑥)2 + 𝐶3𝑥 + 𝐶4 

𝑑2ℎ(𝑦)

(𝑑𝑦)2
− 𝐾3 = 0 ⇒ ℎ(𝑦) =

𝐾3

2
(𝑦)2 + 𝐶5𝑦 + 𝐶6 

𝐾1 + 𝐾2 + 𝐾3 = 0 

 

and 𝑄(𝑡, 𝑥, 𝑦) = 𝑒𝑥𝑝(𝑈(𝑡, 𝑥, 𝑦)): 

𝑄(𝑡, 𝑥, 𝑦) = 𝑄(0,0,0)𝑒𝑥𝑝 (
𝐾1

2
(𝑡)2 + 𝐶1𝑡 +

𝐾2

2
(𝑥)2 + 𝐶3𝑥 +

𝐾3

2
(𝑦)2 + 𝐶5𝑦) (36) 

where 𝐾𝑚 and 𝐶𝑛 are real constants estimated empirically, which has a distribution behavior similar 

to that of relation (31), but not necessarily isotropic. 

 

Figure 8. Representation of relation (36) for 𝐾1 > 0, 𝐾2 < 0 and 𝐾3 < 0. Three values of time 𝑡1 >

𝑡2 > 𝑡3 are depicted, with solid, dashed and dotted lines respectively, where 𝑥 is one axis and 𝑄 =

𝑄(𝑡, 𝑥, 𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) is the population density (right: 3D distribution for some fixed time). 

  

 Source: Author’s representation 

 

Finally, a solution of (35) of the form: 𝑈(𝑡, 𝑥, 𝑦) = 𝑓(𝑡)𝑔(𝑥)ℎ(𝑦) is given: 

𝑑2𝑓(𝑡)

(𝑑𝑡)2
− 𝐾1𝑓(𝑡) = 0 ⇒ 𝑓(𝑡) = 𝐶1𝑒𝑥𝑝(𝑡√𝐾1) + 𝐶2𝑒𝑥𝑝(−𝑡√𝐾1)  
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𝑑2𝑔(𝑥)

(𝑑𝑥)2
− 𝐾2𝑔(𝑥) = 0 ⇒ 𝑔(𝑥) = 𝐶3𝑒𝑥𝑝(𝑥√𝐾2) + 𝐶4𝑒𝑥𝑝(−𝑥√𝐾2) 

𝑑2ℎ(𝑦)

(𝑑𝑦)2
− 𝐾3ℎ(𝑦) = 0 ⇒ ℎ(𝑦) = 𝐶5𝑒𝑥𝑝(𝑦√𝐾3) + 𝐶6𝑒𝑥𝑝(−𝑦√𝐾3) 

𝐾1 + 𝐾2 + 𝐾3 = 0 

For which the equation 𝑄(𝑡, 𝑥, 𝑦) = 𝑒𝑥𝑝(𝑈(𝑡, 𝑥, 𝑦)) produces some interesting results when the real 

constants 𝐶, 𝐶𝑖 and 𝐾𝑖, estimated empirically, take the values 𝐶 > 0, 𝐾1 > 0, 𝐾2 < 0 and 𝐾3 < 0: 

𝑄(𝑡, 𝑥, 𝑦) = 𝑒𝑥𝑝 (𝐶𝑒𝑥𝑝(𝑡√𝐾1)𝑠𝑖𝑛 (𝑥√|𝐾2|) 𝑠𝑖𝑛 (𝑦√|𝐾3|)) (37) 

which demonstrates the existence of city-villages, in relevance to the works by Griffith and Wong 

(2007).  

 

Figure 9. Representation of relation (37) for three values of time 𝑡1 > 𝑡2 > 𝑡3 with solid, dashed and 

dotted lines respectively, where 𝑥 is one axis and 𝑄 = 𝑄(𝑡, 𝑥, 𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) is the population 

density (right: 3D distribution for some fixed time). 

  

 Source: Author’s representation 

 

 It should be emphasized that the equations describing the population distribution in this 

paragraph are only some simple partial solutions of the Laplace equation which is a linear PDE and 

hence the principle of superposition is applied. Therefore, in general, all linear combinations of 

relations (31), (33) and (34) satisfy relation (30) and every such combination can describe the 

isotropic behavior of the population. Similarly, the “homogeneous” behavior of a population is given 

by any linear combinations of relation (36) and (37) since all constitute solutions of relation (35).  

 Evidently, a city rarely can be considered as an inertial system (which is the subject of this 

paragraph), but there are some reasons in justifying the categorization proposed in Figures 3, 5 and 

7. The more apparent and simpler reason is that the inner (intrinsic) property of the exponential 
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growth of the population seems prevalent, in some cases, compared to the external influences imposed 

upon the city. A second reason is that the field data of the above Figures were “snapshots” of the 

population distribution and not a spatiotemporal record of its holistic behavior. As it can be seen in 

the next paragraph, in many cases (Figure 12) the external influence is revealed when the “snapshot” 

is taken at the proper instant, or better yet, when multiples “snapshots” are taken of the same city at 

different instants and compared to each other, as in Bergmann (2019). 

 In Figures 3, 5 and 7 the following remarks can be made: 

• This Figures along with Figure 12 in the next paragraph, present the graphs of observational 

data, for some instance of time, of the population density of cities for specific distances from 

the center of each city (along the polar radius from the city center outward) as points of the 

distance-density coordinate system. They also include an exponential regression of these data 

(solid line), corresponding to the Clark equation of relation (1). 

• The observational data of the cities presented in Figure 3, generally indicate a) a slow initial 

(small values of radius) descent of the population density, b) a rapid descent of the density for 

middle range values of the radius and c) a slow descent for large values of the radius, which 

characterize the bell-shape function of relation (31). 

• Evidently, the behavior of the observation data of the cities presented in Figures 5 and 7 are 

qualitatively radically different of the ones in Figure 3, in the sense that the population density 

follows a wave-like pattern (repetitive increase and decrease motif) as the polar radius 

increases, with the local maxima diminishing with each cycle. The absolute or a local minimum, 

occurs at the center of the cities (𝜌 = 0), presented in Figure 5, as described by relation (34). 

One can observe that this central open space (low population density) occurred in the majority 

of Ancient Greece cities (agora - center marketplace). 

• On the contrary, in the cases of Figure 7, the absolute maximum of each city occurs at the city 

center, in addition to the above-mentioned wave-like pattern, as described in relation (33). 

 The theoretical solutions of temporal behavior of the population systems examined in this 

paragraph, depicted in Figures 2, 4, 6, 8 and 9, indicate that as a system develops, its population 

density increases in areas of local maxima, and decreases (in a smaller ratio) in areas of local minima. 

This behavior can be noticed in the observative data presented in Bergmann (2019). 

 

4. The special case of one-dimensional dynamic population system of constant curvature 

The estimation of the macroscopic behavior of a system inevitably includes some generalizations and 

approximations concerning the nature of the totality of the external influences acting on this system, 

which mainly involves all other systems that interact or compete with the first. One such 
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approximation which, in addition, can easily be mathematically formulated, is the hypothesis of the 

homogeneous and isotropic external influence (force). By this hypothesis, it is assumed that the 

influence of a system toward its environment (and the reaction of the environment toward the system) 

is proportional to the magnitude of this system at any given time. Therefore, any variation of the 

components of the base of the system (one or many populations, primary production, GNP etc.) would 

be met by a corresponding variation of the reaction (force) of the environment both quantitatively 

(homogeneous) and qualitatively (isotropic), following, in the long term, the vector of the variation 

in magnitude and direction respectively. By the principle of Equivalence, the character of the external 

influence corresponds to a similar character of the space of reference of the system, hence the latter 

should be homogeneous and isotropic, that is a space of constant curvature. The first case, that of zero 

curvature (zero external influence) was examined in paragraph 3 and in this paragraph the positive 

and negative constant curvature will be investigated.  

  The positive constant curvature 𝜆 of a space is defined as: 

𝜆 =
1

(𝑅)2
 (38) 

where 𝑅 is the radius of curvature of this space and it is a positive real constant. The metric of a one-

dimensional system, where its space of reference has a usual base of the form: 𝑼 = {𝑈} can be 

calculated by using an additional component, say 𝑈1 and start with Pythagorean metric in two 

dimensions: (𝑑𝑠)2 = (𝑑𝑈)2 + (𝑑𝑈1)2, with the additional constrain (𝑅)2 = (𝑈)2 + (𝑈1)2. So, the 

metric takes the form: 

(𝑑𝑈1)2 =
(𝑈)2

(𝑅)2−(𝑈)2
(𝑑𝑈)2 ⇒ (𝑑𝑠)2 = (𝑑𝑈)2 +

(𝑈)2

(𝑅)2 − (𝑈)2
(𝑑𝑈)2  

and finally: 

(𝑑𝑠)2 =
(𝑅)2

(𝑅)2 − (𝑈)2
(𝑑𝑈)2 (39) 

Since the metric tensor is known, the equations of motion and distribution can be derived directly, 

but a transformation can be applied which simplifies the calculations. An intermediate base 𝑾 = {𝑊} 

can be found so that, the metric tensor takes the unit value when described by this new base: 

(𝑑𝑠)2 =
(𝑅)2

(𝑅)2 − (𝑈)2
(𝑑𝑈)2 = (𝑑𝑊)2 ⇒ 𝑊(𝑈) = 𝑅𝑎𝑡𝑎𝑛 (

𝑈

√(𝑅)2 − (𝑈)2
)  

and the requested transformation is: 

𝑈(𝑊) = 𝑅𝑠𝑖𝑛 (
𝑊

𝑅
) (40) 
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It should be noticed that the metric (39) is not Pythagorean since the transformation between the bases 

𝑈 and 𝑊 is acceptable for all the domain of 𝑈(𝑊) except for the values 𝑈 = ±𝑅. This exception is 

indicative of a non-Euclidian space of reference and, hence, of the existence of external force. 

 Since the metric tensor for the base 𝑊 has a constant, all the Christoffel symbols of the second 

kind vanish and the equation of motion takes the form: 

𝑑2𝑊(𝑡)

(𝑑𝑡)2
= 0 ⇒ 𝑊(𝑡) = 𝐴𝑡 + 𝐵  

and by applying the combined transformations of relations (28) and (40) 

𝑑2𝑊(𝑡)

(𝑑𝑡)2
= 0 ⇒ 𝑊(𝑡) = 𝐴𝑡 + 𝐵 ⇒ 

⇒ 𝑈(𝑡) = 𝑅𝑠𝑖𝑛 (
𝐴𝑡 + 𝐵

𝑅
) ⇒ 

⇒ 𝑄(𝑡) = 𝑒𝑥𝑝 (𝑅𝑠𝑖𝑛 (
𝐴𝑡 + 𝐵

𝑅
)) 

 

where 𝑅 > 0, 𝐴 and 𝐵 are real constants. The last equation of motion 𝑄(𝑡) is periodic, with period 𝑇 

and takes its extreme values at 𝑄𝑚𝑖𝑛(𝑡 = 0) = 𝑒𝑥𝑝(−𝑅) and 𝑄𝑚𝑎𝑥(𝑡 = 𝑇 2⁄ ) = 𝑒𝑥𝑝(𝑅), hence: 

𝑄(𝑡) = 𝑒𝑥𝑝 (𝑙𝑛(𝑄𝑚𝑎𝑥)𝑠𝑖𝑛 (
2𝜋

𝑇
𝑡 −

𝜋

2
)) (41) 

 

Figure 10. Representation of the equation of motion (thick line) of relation (41) and the external force 

(dashed line) of relation (42), where 𝑡 is time and 𝑄 = 𝑄(𝑡) and 𝐹 = 𝐹(𝑡). 

 

 Source: Author’s representation 

 

Also, the external force acting on the system in the usual base is: 

𝐹(𝑡) = −
𝑑2𝑈(𝑡)

(𝑑𝑡)2
= 𝑙𝑛(𝑄𝑚𝑎𝑥)𝑠𝑖𝑛 (

2𝜋

𝑇
𝑡 −

𝜋

2
) (42) 
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 The use of this series of transformations can be appreciated when the solutions of the equation 

of distribution are calculated. Indeed, since for the base 𝑊 the Christoffel symbols vanish, this 

solution reduces to: 

∆𝑊(𝒙) = ∑ (
𝜕2𝑊(𝒙)

𝜕𝑥𝜇𝜕𝑥𝜇
)

3

𝜇=0

= 0 ⇒ 𝑄(𝒙) = 𝑒𝑥𝑝 (𝑅𝑠𝑖𝑛 (
𝑊(𝒙)

𝑅
)) (43) 

where some solutions of the four-dimensional Laplace equation have already been produced in 

paragraph 3. As an example, the case of relation (33): 

∆𝑊(𝑡, 𝜌) = 0 ⇒ 𝑊(𝑡, 𝜌) =
1

𝑅
𝐶1𝑒𝑥𝑝(𝑡√𝐾)𝐽0(𝜌√𝐾)  

can be considered, producing some interesting results when 𝐾 < 0: 

𝑄(𝒙) = 𝑒𝑥𝑝 (𝑅𝑠𝑖𝑛 (
𝐶

𝑅
𝑐𝑜𝑠 (𝑡√|𝐾|) 𝐽0 (𝑖𝜌√|𝐾|))) (44) 

where 𝐾 < 0 and 𝐶 < 0 are real constants estimated empirically and 𝐽0 (𝑖𝜌√|𝐾|) is the Bessel 

function of the first kind with integer number 0. 

 

Figure 11. Representation of relation (44) for three values of time 𝑡1 > 𝑡2 > 𝑡3 with solid, dashed 

and dotted lines respectively where 𝜌 is the polar radius and 𝑄 = 𝑄(𝑡, 𝜌) is the population density 

(right: 3D distribution for some fixed time). When time reaches the value 𝑡 = 𝑇 2⁄ , the population 

distribution follows the reverse path (that is 𝑡3 → 𝑡2 → 𝑡1). 

  

 Source: Author’s representation 
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Figure 12. Field data of various cities connecting polar radius to population density, approximating 

relation (44) and Figure 12. 

   

   

  

 

 Source: Bertaud and Malpezzi (2003) 

 

 The negative constant curvature 𝜆 of a space can be developed in a similar manner: 

𝜆 =
1

(𝑖𝑅)2
⇒ 𝜆 = −

1

(𝑅)2
 (45) 

where 𝑅 is the radius of curvature of this space and it is a positive real constant. The metric of a one-

dimensional system, where its space of reference has a usual base of the form: 𝑼 = {𝑈} can be 

calculated by using an additional component, say 𝑈1 and start with the Pythagorean metric in two 

dimensions: (𝑑𝑠)2 = (𝑑𝑈)2 + (𝑑𝑈1)2, with the additional constraint −(𝑅)2 = (𝑈)2 + (𝑈1)2. So, 

the metric takes the form: 

(𝑑𝑈1)2 = −
(𝑈)2

(𝑅)2+(𝑈)2
(𝑑𝑈)2 ⇒ (𝑑𝑠)2 = (𝑑𝑈)2 −

(𝑈)2

(𝑅)2 + (𝑈)2
(𝑑𝑈1)2  

and finally: 

(𝑑𝑠)2 =
(𝑅)2

(𝑅)2 + (𝑈)2
(𝑑𝑈)2 (46) 
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As in the previous case, an intermediate base 𝑾 = {𝑊} will be used to reduce the metric tensor to 

take the unit value: 

(𝑑𝑠)2 =
(𝑅)2

(𝑅)2 + (𝑈)2
(𝑑𝑈)2 = (𝑑𝑊)2 ⇒ 𝑊(𝑈) = 𝑅𝑎𝑠𝑖𝑛ℎ (

𝑈

𝑅
)  

and the requested transformation is: 

𝑈(𝑊) = 𝑅𝑠𝑖𝑛ℎ (
𝑊

𝑅
) (47) 

 Since the metric tensor for the base 𝑊 has a constant, all the Christoffel symbols of the second 

kind vanish and the equation of motion takes the form: 

𝑑2𝑊(𝑡)

(𝑑𝑡)2
= 0 ⇒ 𝑊(𝑡) = 𝐴𝑡 + 𝐵  

and by applying the transformations of relations (28) and (47) 

𝑑2𝑊(𝑡)

(𝑑𝑡)2
= 0 ⇒ 𝑊(𝑡) = 𝐴𝑡 + 𝐵 ⇒ 

⇒ 𝑈(𝑡) = 𝑅𝑠𝑖𝑛ℎ (
𝐴𝑡 + 𝐵

𝑅
) 

 

The equation of motion in the natural base is: 

𝑄(𝑡) = 𝑒𝑥𝑝 (𝑅𝑠𝑖𝑛ℎ (
𝐴𝑡 + 𝐵

𝑅
)) (48) 

where 𝑅 > 0, 𝐴 and 𝐵 are real constants and the external force acting on the system in the usual base 

is given by: 

𝐹(𝑡) = −
𝑑2𝑈(𝑡)

(𝑑𝑡)2
= −

(𝐴)2

𝑅
𝑠𝑖𝑛ℎ(𝐴𝑡 + 𝐵) (49) 

As in the case of positive curvature, the equation of distribution is simplified as: 

∆𝑊(𝒙) = ∑ (
𝜕2𝑊(𝒙)

𝜕𝑥𝜇𝜕𝑥𝜇
)

3

𝜇=0

= 0 ⇒ 𝑄(𝒙) = 𝑒𝑥𝑝 (𝑅𝑠𝑖𝑛ℎ (
𝑊(𝒙)

𝑅
)) (50) 

 Although over-simplified, both as a system and as an external influence acting upon it, the 

simulation of this paragraph can nevertheless deduce some indications about the long-term behavior 

of population density, as shown in relation (44) and Figure 11, which do not contradict the 

observational data presented in Figure 12: 

• Let us consider a city that, when in an inertial state, behaves as predicted by relation (33). The 

application of a homogeneous and isotropic external force acts as a “compression” upon the 

population density, in a manner that this “compression” is analogous to the size of the 

population (and the population density) at every instant. In the long term, this city follows a 

circle of ascent, climax and descent, as in Figure 10. 
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• The wave-like pattern is retained but, in the dynamic state, the wavelength (the polar radius 

intervals between two consequent local maxima) diminishes as the polar radius increases. On 

the contrary, the wave width (the difference between the values of a local maximum and the 

consequent local minimum) is not diminished as the polar radius increases (as in the case of an 

inertial city).  

• The most significant dynamic characteristic is that at every point of the polar radius, the 

population density increases and decreases circularly over time (see Figures 10 and 11), so that 

large numbers of the population move from the city center to its periphery and back again, 

resembling stationary waves. 

• The population distribution graphs of the cities presented in Figure 12 are “snapshots” of each 

city’s history. If it is assumed that all these cities are influenced by the same kind of external 

forces (as the behavior of their local maxima indicates), perhaps each graph in Figure 12 

represents a different instant of the history of similar cities. By accepting this hypothesis, the 

population movement between the center of a city and its periphery can be noticed, in Figure 

12.  

 

5. Discussion, conclusion, and directions for future research 

The issues that the present paper tries to address, were motivated by a preliminary and rather casual 

discussion at the Technical Chamber of Greece, concerning the (then) new building regulations for 

the Metropolitan Areas of Athens and Thessaloniki, namely the height of buildings in different areas 

of each city, the zoning, the placement and percentage of public open spaces, etc. It has been proven, 

time and again, that every time any regulation (or any legislation for that matter) ignores the inherent 

natural properties of the system upon which it is going to be applied, the situation of this system 

becomes worse than before the application of this regulation - like ignoring gravitation when studying 

a new building. Evidently, the intimate knowledge of the distribution of a population is essential in 

Urban and Regional Planning but has much broader social and political implications, especially when 

studied in combination with other variables. 

 Since 1951, when Clark published the equation described in relation (1), many equations have 

been produced (i.e., see relations (2) through (7)) to simulate the behavior of the population density 

of a city. Most of these equations, especially the ones referring not to a specific city of area, but 

propose a more general rule, are special case of relation (3), that is, an exponential function with a 

polynomial of the polar radius as exponent. Hence, the above equations can describe the population 

density of a city for a specific instant in time, only for some interval of the polar radius (as seen in 

Figures 3, 5, 7 and 12) and for the case of isotropic expansion of the city. The main characteristic of 



 63 

the approach presented in this paper is the deduction of the equations of distribution by an analytical 

deterministic general model, which permits the study of both the spatial and temporal behavior of 

population density. The existence of this general model and its capability to produce specialized 

systems, permits the study of the behavior of one-dimensional (as in the cases of the present paper) 

or multidimensional systems, inertial (as in Paragraph 3) or dynamic (as in Paragraph 4), having 

isotropic (as in relation (30)) or non-isotropic (as in relation (35)) expansion. Moreover, the 

observational data given in Figures 3, 5, 7 and 12, seem to qualitatively validate the resulting 

theoretically derived equations. 

 The analytical derivation of the equation of population distribution could present some 

additional benefit, even at this early stage of the development of the model. Indeed, the existence of 

a constitutional differential equation for the population distribution, in the forms of relations (30) or 

(35), makes the investigation of the alterations of population density of a city, due to topographic 

morphology (coastline, rivers, mountains, including railroads or highways, etc.) possible, by reducing 

this subject to a boundary problem applied to the constitutional equations. Furthermore, the 

knowledge of a spatiotemporal equation of distribution, provides the means of determining present 

AND FUTURE optimal paths of the propagation of interaction within a city, via the application of 

variational methods, thus benefiting urban and transportation planning. 

 Future research on the subject of this paper could include two logical procedures leading to the 

improvement and refinement of the general simulation described in paragraph 2. Firstly, the case of 

paragraph 3 should be generalized to include multidimensional population systems, in such a way 

that every population (variable – dimension) would interact with each other. This procedure would 

also determine the exact form of the external force acting upon a population system, originating from 

another analogous system. Apart from the observational density data from interacting cities, the 

Kolmogorov equation of relation (26) should be used as a theoretical guide. Indeed, the metric tensor 

of relation (9) should produce an equation of motion of the system that could be reduced to some 

form of the Kolmogorov equation. Moreover, two special cases of Kolmogorov equations should be 

investigated, namely the linear N-dimensional first order differential system of equations: 

𝑑𝑄𝑖(𝑡)

𝑑𝑡
= ∑ (𝐴𝑘

𝑖 𝑄𝑘(𝑡)) , 𝑖 = 1, … , 𝑁

𝑁

𝑘=1

 (51) 

where 𝐴𝑘
𝑖  are real constants and the Lotka-Volterra system (see, for example, Dick (2004), Francisco 

(2009) or Logan and Wolesensky (2009)): 
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𝑑𝑄1(𝑡)

𝑑𝑡
= 𝐴𝑄1(𝑡) + 𝐵𝑄1(𝑡)𝑄2(𝑡) 

𝑑𝑄2(𝑡)

𝑑𝑡
= 𝐶𝑄2(𝑡) + 𝐷𝑄2(𝑡)𝑄1(𝑡) 

(52) 

where 𝐴, 𝐵, 𝐶 and 𝐷 are real constants, and its generalized form: 

𝑑𝑄𝑖(𝑡)

𝑑𝑡
= 𝐴𝑖𝑄𝑖(𝑡) + ∑ (𝐴𝑘𝑚

𝑖 𝑄𝑘(𝑡)𝑄𝑚(𝑡)) , 𝑖 = 1, … , 𝑁

𝑁

𝑘,𝑚=1

 (53) 

where 𝐴𝑖 and 𝐴𝑘𝑚
𝑖  are real constants. The next, more laborious, procedure should be the incorporation 

to a multidimensional dynamic system some variables of both population and economic nature. 
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