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Abstract 

This study explores the individual and spatial level determinants of the adoption cycling as a 

commuting mode by university staff members using data from Lyon, France (the MobiCampus-UdL 

survey). The empirical approach of the study is centered on the use of a gradient boosting machine 

prediction implemented using the XGBOOST framework, followed by the use of an interpretable 

machine learning method, namely Shapley Additive exPlanations (SHAP). We uncover various 

complex interactive and nonlinear relationships among model features and a binary outcome of being 

or not being a bike user for commuting. Our main findings suggest that policies designed towards 

broadening individual access to bicycles through ownership or sharing, in addition to the provision 

of shared cycle networks within 7 km of major employment centres can increase the adoption of 

cycling by commuters. Furthermore, among other results, we also observe that promoting regular 

teleworking among university staff, particularly for those who live at a distance more than 5 km of 

their place of work, could encourage commuting by bike. We also observe that cycling and public 

transport become complementary modes when home-work distances are greater that about 7 km. 

 

Keywords: home-campus mobility; bicycle use; university staff; non-linear effects; bike-sharing 

accessibility; Machine learning  

JEL Classification: R40, R58, C14. 

 

1. Introduction 

In November 2021, the city of Lyon, France, made 10,000 shared bikes available for free of charge 

to socially disadvantaged young people aged 18 to 25 (Dimitrova, 2021). Given the relatively low 

level of bicycle ownership in France within the EU, the move marks an increased commitment by 

policymakers to support sustainable mobility in the post-Covid framework. The increased willingness 

to use bicycles as an urban mobility mode during the pandemic offers new opportunities to expand 

now bicycle use among urban populations (Azevedo et al., 2023;  Nikiforiadis et al., 2020). In 

particular, university environments seem to be privileged places to promote cycling, due to their 

spatial arrangements, demographic profiles, and cultural settings (Mateo-Babiano et al., 2020).  

Moreover, university communities are subpopulations that are more likely than average to favour 

cycling for commuting (Balsas, 2003; Van den Berg and Russo, 2017). In this respect, the bicycle 

friendliness of university environments can be harnessed and used as a catalyst and driver of change 

https://orcid.org/0000-0001-8975-5124
https://orcid.org/0000-0001-8975-5124
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towards more sustainable travel behaviour and commuting modes in wider urban areas such as Lyon 

(Balsas, 2003; Kelarestaghi et al., 2019).  

Given the benefits of daily cycling that have been highlighted in the literature in terms of 

health, reduction of CO2 emissions, air pollution, road and public transport congestion and cognitive 

performance (e.g. Prince et al., 2021; Neves and Brand, 2019; EDF, 2016; Martens, 2004; Andersen 

et al., 2000), the real challenge for public policy makers is to identify ways to increase its use. For 

example, would it make more sense to encourage households to own a bicycle, to improve the 

accessibility to bike-share stations where people live and/or work, to reduce the supply of other modes 

of transport or, on the contrary, to strengthen and adapt intermodality? These questions arise for the 

general population, but especially for those populations that are the most likely to change their 

transport habits, such as the university community (Wilson et al., 2018). Understanding the factors 

that currently influence cycling is necessary in order to design effective pro-cycling transport policies 

for the future.  

Our study focuses on the bicycle use for commuting by staff members of the university 

community in the Lyon metropolitan area. We chose this target population because university staff 

members are demographically similar to non-university urban commuters, but also work in a bicycle-

friendly setting. Furthermore, transport habits are generally observed more in the context of 

commuting rather than for other purposes (Rondinella, 2015). In order to explore and identify the 

determinants of the bicycle use for commuting for this particular group, we carried out three surveys 

in 2017, 2018, and 2019, as part of the MobiCampus-UdL project. The sample consists of the staff 

members from around the twenty campuses of the University of Lyon (UdL). We implement 

randomized and sequential machine learning (ML) ensemble models based on weak learners 

performing recursive binary partitioning (i.e. individual regularized classification trees). Through the 

use of interpretable ML tools based on the computations of Shapley Additive Explanations (SHAP) 

values, we investigate – among other results – the interactive and non-linear relationships 

algorithmically learned from the MobiCampus-UdL surveys. Indeed, machine learning is useful for 

finding complex non-linear relationships and capturing the hidden patterns of variables because, 

unlike traditional statistical models, machine learning has no prior assumption that data must follow 

a particular distribution (Ji et al., 2022). Furthermore, while many studies have concluded that the 

longer the trip distance, the lower the share cycling in the mode choice for commuting, the interaction 

effects between distance and other variables on cycling behaviour have rarely been evaluated. 

Consequently, we explore in particular the complex interactions between distance and accessibility 

to different modes close to home or on campus. Our findings can provide valuable insights for 

promoting and improving the development of urban cycling in France. They also complement the 
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scarce quantitative research on cycling in France (see, for example, Papon, 2003; Jensen et al., 2010; 

Héran, 2015; Raux et al., 2017). 

The remainder of the paper is organised as follows. Section 2 describes the MobiCampus-

UdL travel surveys and methods used in the research, and the main results are discussed in Section 

3. Section 4 concludes the paper with policy and research implications. 

 

2. Data and methodology 

2.1 The MobiCampus-UdL Travel Surveys 

We use data from the three web-based MobiCampus-UdL travel surveys conducted in March-April 

2017, 2018 and 2019 among the staff of the “University of Lyon” (UdL), an academic community of 

26 institutions dedicated to education and research in the Greater Lyon area (Metropole de Lyon, 

France). The UdL has 7,000 researchers and 3,000 administrative and technical staff spread over 21 

campuses and university sites. Like many universities in France and around the world, the UdL 

authorities have been working for several years on Mobility Plans to improve the accessibility of the 

campuses and university sites in a metropolitan area of more than 1.4 million inhabitants, while 

reducing the use of cars, which are more polluting and take up more space, in favour of alternative 

modes of transport. A recent UdL assessment showed that, on average, home-to-work travel accounts 

for 14% of the carbon footprint of its institutions (Université de Lyon, 2022). In this context, the 

MobiCampus-UdL project, carried out by the Transport Urban Planning Economics Laboratory with 

the financial support of the UdL and the Lyon Urban Community, aims to understand the daily travel 

behavior of the university community in order to help campus managers to plan coherent mobility 

management policies. 

Of the 26 UdL institutions, 17 participated in the three waves of the survey (2/3 of the UdL 

population). The questionnaires were sent to their staff via institutional e-mail addresses and included 

different categories of questions: i) their occupation (type of institution (university vs. business and 

engineering school), type of job (researcher vs. administrative-technical staff), usual working patterns 

and hours; teleworking habits); ii) usual mode(s) travel to and from the campus and transport 

membership and ownership (bicycle/car ownership, public transport membership, bike-sharing 

membership); iii) general socio-economic and demographic characteristics such as age, gender, 

marital status (single, couple with/without children), household income class, and place of residence 

(city centre, inner suburbs, outer suburbs, out of agglomeration; distance from home to campus). A 

fourth category of information on individual accessibility to different modes of transport for home 

and work (campus) was constructed from the respondents’ precise locations on interactive maps and 

the infrastructure network information. The Lyon agglomeration has more than 120 bus lines, 4 metro 
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lines (32km), 7 tram lines (66km), 2 funiculars, 6 railway stations and more than 400 bike-sharing 

stations with about 5,000 bicycles in operation. However, the level of public transport is uneven 

across the 21 campuses; most bike and public transport stations are located in the city centre (Figure 

1). We therefore constructed dummy variables indicating whether the respondent’s home (or 

workplace) was less than one kilometre from a train station, close to a public transport station (i.e. 

less than 500 metres from a metro station, less than 400 metres from a tram stop or less than 300 

metres from a bus stop), and less than 300 metres from a bike-share station. 

  

Figure 1. Campuses of the University of Lyon (UdL) and public transport lines and self-service bike 

stations in Lyon agglomeration  

 

Source: own processing.  

  3,670 people from the 17 participating institutions completed the questionnaire, giving a 

response rate of 30%. Table 1 presents the sample characteristics. Half of the university staff 

respondents are teachers and researchers and half are administrative and technical staff. A significant 

proportion telework at least occasionally, with 17% doing so regularly, despite our pre-Covid study 

period. Of these, 47% live in the city centre, 14% in the inner suburbs, 11% in the outer suburbs and 

almost 28% outside the agglomeration. 29.5% of them live less than 5km away from their place of 

work and more than 15% live more than 30km away. The respondents’ places of residence are well 
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served by public transport and bike-sharing networks: 71% live less than 300m from a public transport 

station and 44% live less than 1km from a bike-sharing station. The accessibility of these modes of 

transport is even higher for their place of work: 92% and 70% respectively work close to a public 

transport station and a bike-sharing station. Accessibility to the train is much lower (28% for home 

and 13% for work). In terms of means of transport, a large majority of university staff have a driving 

licence and own a car (76%). In comparison, only 29% own a private bicycle and 11% have a 

subscription to the shared bicycle network. However, owning a mode of transport does not necessarily 

mean using it for commuting. In our sample, 15.7% of employees commute by bicycle1, which is a 

much higher cycling rate than in the general French working and student population. In 2021, only 

4.5% of French people who commute to work or study on a daily basis report that they have used a 

bicycle for all or part of their journey. 2 

Table 1. Descriptive statistics 

Variable Code Variable Description Frequency 

Bikeuse Use of bicycle for commuting 15.7% 

 Gender:  

Male Men 52.8% 

 Women 47.2% 

Age Age:  

 under 35 years old 19.3% 

 35 to 44 years old 28.3% 

 45 to 54 years old 32.2% 

 55 years old and over 20.2% 

Maritalstatus Marital status:  

 Couple with children 50.4% 

 Couple without children 23.6% 

 Single 19.3% 

 Single with children 6.7% 

 

1 This figure includes not only the exclusive use of the bicycle to get to work, but also use in combination with one or 

more other modes of transport.  

2 https://www.notre-environnement.gouv.fr/themes/amenagement/transport-et-mobilite-ressources/article/les-francais-

et-le-velo-en-2022#Part-du-velo-comme-mode-de-deplacement-principal-pour-se-rendre-au-nbsp 
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Income_cat Household income per month:  

 Less than 2,000 euros 15.6% 

 [2,000 , 3,000[ euros 18.6% 

 [3,000 , 4,000[ euros 19.0% 

 [4,000 , 6,000[ euros 26.4% 

 6,000 euros and above 11.1% 

Type_etab Type of institutions:  

 University 48.6% 

 Business and engineering school 51.5% 

Profession Occupation:  

 Lecturer-Researcher 48.0% 

 Technical and administrative staff 52.0% 

Teleworking Teleworking:  

 Yes, sometimes 29.0% 

 Yes, regularly 17.1% 

 No 53.9% 

Zone_resi Home location:  

 City Centre (Lyon, Villeurbanne) 47.1% 

 Inner suburbs 13.7% 

 Outer suburbs 11.4% 

 Outside the agglomeration 27.7% 

Distance Home-campus distance:  

 Less than 1 km 2.9% 

 1 to 3 km 12.4% 

 3 to 5 km 14.2% 

 5 to 15 km 38.5% 

 15 to 30 km 16.6% 

 30 to 50 km 8.0% 

 50 km and more 7.4% 

Drivingcarown Driving licence and car ownership 76.1% 

Bikeown Own a bike 28.6% 

BikeShM Bike sharing membership 11.4% 

PubTransM Public transport membership 37.2% 
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PCarsh Practicing car-sharing 1.9% 

PCarpool Practicing car-pooling 19.6% 

AccSSB_res Accessibility to self-service bicycle station 

(residence) 

 

44.4% 

AccPubT_res Accessibility to public transport station 

(residence) 

 

70.6% 

AccTrain_res Accessibility to train station (residence) 28.1% 

AccSSB_campus Accessibility to self-service bicycle station 

(campus) 

 

69.6% 

AccPubT_campus Accessibility to public transport station 

(campus) 
91.6% 

AccTrain_campus Accessibility to train station (campus) 13.0% 

Arrivaltime Usual arrival time (campus)  

 Before 7.30 am 12.2% 

 Between 7.30 and 8.00 am 21.4% 

 Between 8.00 and 8.30 am 20.6% 

 Between 8.30 and 9.00 am 26.6% 

 Between 9.00 and 9.30 am 13.7% 

 Between 9.30 and 10.0 am 3.2% 

 After 10.0 am 2.4% 

Departuretime Usual departure time (campus)  

 Before 5.00 pm 16.4% 

 Between 5.00 and 5.30 pm 19.9% 

 Between 5.30 and 6.00 pm 20.7% 

 Between 6.00 and 6.30 pm 19.4% 

 After 6.30 pm 23.7% 

 Number of observations 3,670 

Source: MobiCampus-UdL Travel surveys (2017, 2018, 2019) among the university staff, own calculations. 
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2.2 Methods 

We investigate the impact of individual characteristics, distance from home to campus, and 

accessibility to different modes of transport on the choice of cycling to work. We employ a gradient 

boosting machine (GBM), developed by Friedman (2001, 2002) through the application of the 

Extreme Gradient Boosting (XGBoost) algorithm by Chen and Guestrin (2016) due to its advantages 

in highlighting the most important factors affecting individuals’ choices and the overall impact on the 

outcome, and in accurately recognizing non-linear relationships (James et al., 2013; Varian, 2014). 

Furthermore, tree-based machine learning algorithms are often difficult to interpret due to their non-

parametric and prediction-oriented structures. In order to ensure informative statistical inference, our 

empirical approach is particularly centered on interpretable ML techniques implemented ex-post on 

the predictions generated by the tree-based approaches. More specifically, in terms of model 

interpretation, we take advantage of the SHapley Additive exPlanation (SHAP) technique (Ribeiro et 

al., 2016; Strumbelj and Kononenko, 2014), developed by Lundberg and Lee (2017), which is based 

on the Shapley values introduced by Shapley (1953) in the framework of cooperative game theory. 

These techniques are model agnostic and focus on retrospectively explaining the results of the original 

predictive models through a series of operations using different randomisation procedures in an 

iterative manner for the purpose of computing feature value effect sizes and directions. Thus, the 

empirical analysis consists of two steps: prediction and interpretation. 

 

Extreme Gradient Boosting (XGBoost) and prediction 

The prediction step is based on the XGBoost algorithm, an efficient implementation of gradient 

boosted decision trees, developed by Chen and Guestrin (2016). In practice, the individual predictions 

for the test sample – randomly drawn from the full dataset – are done through building boosted trees 

based on the recursive binary partitioning algorithm of Breinan et al. (1984). However, the principle 

of the gradient boosted decision trees is to generate sequential regression trees, where each decision 

tree learns from the previous tree and affects the next tree to improve the model (by reducing the 

prediction errors of the previous trees) and build a strong learner (Friedman, 2001; Friedman, 2022). 

The superiority of XGBoost lies in several innovations over gradient boosting, including a regularised 

learning objective, optimization in storage and computation, and randomisation. For example, the 

XGBoost algorithm allows for cross-validation for regularisation and determination of the optimal 

model parameters such as the learning rate, i.e. the step size for revising the predictions for each 

observation. 

In XGBoost, a suitable parameter set needs to be selected to maximise model performance: 

parameter tuning is important to prevent overfitting and to improve generalization ability. In 
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particular, overfitting occurs when a model starts to learn noise and random fluctuations and 

eventually treats them as meaningful facts or concepts. The learning rate makes the model more 

robust by shrinking the weights at each step; the maximum depth of the tree represents the maximum 

number of splits and its higher value could cause overfitting; the subsample is the random fraction of 

the training data prior to growing trees, and its lower value makes the model more conservative and 

reduces overfitting, but too small values could lead to underfitting; the number of trees denotes the 

number of iterations of the model. In this study, XGBoost is trained on 70% of our initial sample that 

is randomly selected, and the remaining 30% is used to test the model. We apply a hyperparameter 

procedure to determine the optimal combination of these parameters. The number in brackets are the 

values used to construct the hypergrid, while the numbers in bold on the left-hand side are the 

parameters corresponding to the minimum mean log-loss of the gradient boosting machine’s 

prediction of the validation sets, that are put apart within a 10-fold cross-validation procedure3: 

• Learning rate: (0.005, .001, .01, .05, .1), 0.005 

• Maximum tree depth: (5, 10, 15), 5 

• Minimum number of observations in terminal nodes: (5, 10, 15), 5 

• Subsample ratio in each iteration: (.5, .7, .9, 1), 1 (i.e. the gradient boosting model is non-

stochastic) 

• Feature subsample ratio in each iteration: (.5, .7, .9, 1), 0.9 

• Number of trees: 1,247 

 

Model interpretation 

As the non-parametric XGBoost models do not generate predictions and effect size estimates 

simultaneously, we perform additional retrospective analyses on their output. SHapley Additive 

exPlanations (SHAP), as proposed by Lundberg and Lee (2017), is used to interpret the outputs of 

 

3 The R package for XGBoost and the cross-validation procedure were developed by Chen et al. (2019). A 10-fold cross-

validation procedure is used on the training data to test the stability of the model performance, i.e. the training data is 

randomly divided into ten subsamples, and ten models are trained in such a way that each time nine subsamples are used 

to train a model and one subsample is used to test a model. 
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the models. The calculation and observation-specific representation of SHAP values provides a means 

to explore the strength of the relationships among model variables (i.e., to estimate the contribution 

of each variable) as well as their directions (Lundberg and Lee, 2017; Molnar, 2019).  

A major advantage of SHAP values over ceteris paribus effect sizes (i.e. estimated elasticities) 

is that they are computed by replacing randomly selected subsets of model features for each individual 

in the training data through a random sampling of feature values from within the same dataset 

(Lundberg and Lee, 2017; Molnar, 2019). Therefore, for each person in our training dataset the effect 

of a given feature value on the outcome predicted for that person is calculated as ‘mutatis mutandis’ 

as opposed to ceteris paribus, because the remaining feature values for that individual are randomly 

replaced multiple times (for combinations of random subsets of variables to be replaced) and the 

effect is recalculated. In other words, the effect is calculated by allowing everything else to change, 

rather than keeping the variables at their average value. Strumbelj and Kononenko (2014) presented 

an approximation of the SHAP values, given the computational inefficiency of the procedure 

described above, which we implement in the present study. 4,5 

To provide more detail on some of the relationships between features and cycling to work, we 

also use SHAP dependence plots, which describe the feature value on the x-axis and the 

corresponding marginal effect calculated by the Shapley value on the y-axis. The positive or negative 

Shapley value indicates how much a feature positively or negatively affects the prediction of an 

instance. In addition to examining the main effect of each characteristic on cycling, we also explore 

the possible interaction effects between the main characteristics and home-to-work distance to better 

explain cycling behaviour. Interaction effects occur when the effect of one variable depends on the 

value of another variable, and we check for their existence using the interaction values of feature 

pairs. If the interaction value of a feature pair is zero, there is no interaction between the feature pair 

(Lundberg et al., 2019; Lundberg et al., 2020). Therefore, we construct the SHAP dependence plots 

of feature pairs with interaction values. 

 

 

 

 

 

4 For recent illustrations and the mathematical documentations of this process in the context of cycling, traffic accidents, 

mobility, and employment, see e.g. Ji et al. (2022); Parsa et al. (2020); Celbiş (2022); Celbiş et al. (2023).  

5 We compute and plot the SHAP values using the R package SHAPforxgboost developed by Liu and Just (2020).  
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3. Results and discussion 

3.1 XGBoost model performance 

Our main prediction model, the XGBoost, predicts the bicycle use of the persons in the test dataset 

with 90.8% accuracy whereas the persons who do not use bicycles in this portion of the data account 

for 82.2% of the sample. The prediction performance of the algorithmic model is assessed more 

accurately using a receiver operating characteristic (ROC) curve and the associated area under the 

curve (AUC) value of 0.953  in Figure 2.  

A further look into the structure of the data prior to proceeding to the main XGBoost results 

are done by examining the existence of anomalies in the complete dataset using the isolation forest 

method developed by Liu et al. (2008) and clustering the respondents of the survey through the use 

of a random forest proximity plot resulting from a random forest (Breiman, 2001) prediction with 500 

trees using the same training data. The resulting random forest proximity matrix (based on the 

proximities of the out-of-bag observations) is reduced to three dimensions through metric 

multidimensional scaling.6 Each sphere in the three dimensional random forest proximity plot 

presented in Figure 3a corresponds to a respondent in the training data where the orange color 

corresponds to bicycle users and the grey color represents the non-bike users. The sphere sizes 

represent the home-campus distance for the corresponding individual where larger spheres represent 

longer distances. Clusters of persons traveling short and long distances are visible in the random 

forest proximity plot. On the other hand, the bike users in orange are densely clustered. An enlarged 

view of the bikers cluster is presented in Figure 3b which shows that this cluster is mostly made up 

of persons with lower home-campus distances. 

However, the analysis of the above mentioned potential anomalies shows that we do not have 

highly anomalous observations in our data set (see Appendix).  

 

 

 

 

 

 

 

 

6 See Aldrich and Auret (2013); Breiman and Cutler (2020); Friedman (2001) for the details of this technique. 
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Figure 2. Receiver Operating Characteristic Curve 

 

Source: own processing.  

 

Figure 3. Random Forest Proximities 

                                   

a) Random Forest Proximity Plot (Full) b) Random Forest Proximity Plot (Close-up on the 

Cluster of Bikers)  

Source: own processing.  

 

 

3.2 Feature analysis and SHAP interaction values 

Figure 4 shows the SHAP summary plot resulting from the XGBoost prediction that orders variables, 

on the y-axis, based on their importance to use bicycle for commuting. Each dot represents a person 

in the training data. The x-axis represents the contribution of each variable value (higher values are 

shown in darker colors) on the deviation of a respondent’s predicted log-odds from the mean predicted 

value arising from the corresponding feature value for all persons in the training data. 
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 Figure 4. SHAP Values – Classification of Cyclists and non-cyclists for commuting 

 

Source: own processing.  

In line with previous studies (Dill and Voros, 2007; Munoz Lopez, 2016), we can see from 

the SHAP summary plot that all types of access to a bicycle are the most important features in the 

model, and also the most important in explaining bike commuting among university staff. In 

particular, bike users are much more likely to own a private bicycle. In addition, having a bike-sharing 

membership is also a major factor in profiling cyclists, with having a membership is potentially more 

positively associated with being a bike user, but not having a membership not being associated with 

a drastic reduction in the likelihood of using a bicycle for commuting. Therefore, policies that 

encourage personal purchase of a bicycle might be more likely to increase the use of bicycles for 

commuting than policies that encourage membership of a bike-sharing service. Public transport 

season ticket ownership is associated with a lower relative likelihood of commuting by bicycle. This 

finding would suggest that, overall, cycling and the use of public transport are substitutable rather 

complementary modes of transport among university staff. However, this effect may be non-linear 

and in particular may vary according with the distance between home and work. We explore the 

possible interaction effects of these two variables on the bicycle use, using interaction values of pairs 

of characteristics: the combination of the SHAP dependence plot and interaction values is shown in 
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in Figure 5. It shows that people with a public transport pass (purple dots) are less likely to cycle 

when the distance from home to work is relatively short (less than about 7 km), but more likely to 

cycle for longer distances. The opposite pattern is observed for people without a public transport 

season ticket. Therefore, cycling and public transport would become complementary modes beyond 

a certain distance threshold. Our result supports the thrust of the recent French Cycling and Walking 

Plan 2023-2027, which aims to make these two modes of transport attractive alternatives to the 

private car by combining them with public transport for long journeys. 

Private car ownership is negatively related to bicycle choice (Figure 4), as expected from the 

literature (Parkin et al., 2007; Barberan et al., 2017). However, its contribution to explaining bicycle 

use for commuting is much less important than bicycle ownership or public transport membership. 

 

Figure 5. Interaction effects between public transport membership and home-to-work distance 

 

Source: own processing.  

Distance to work is the fourth most important factor in our model. However, as its effect is 

not clearly represented in Figure 4, we need to plot its SHAP dependence (Figure 6). Figure 6 shows 

the non-linear attribution of home-to-work distance to the use of the bicycle for commuting. When 

the home-to-work distance is very short (<3 km), the distance is associated with decreased 

probabilities of using a bicycle. The SHAP values for cycling then increase together with distance, 

and then turn negative again after about 7 km. They become positive again after about 30km, which 

may correspond to commuters who use bikes in combination with other modes of transport, as at this 
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distance, the people with an increased likelihood of cycling are mainly those who have a public 

transport membership.  

.  

Figure 6. SHAP dependence plot for home-to-work distance variable 

 

Source: own processing.  

Not surprisingly, Figure 4 shows that accessibility to a shared bicycle station has a strong 

influence on the use of the bicycle for commuting. Nevertheless, a number of refinements can be 

made to this result, which may be important for the effective deployment of such shared cycle 

networks. Firstly, the proximity of a bike-share station to home (origin accessibility) has a higher 

contribution to cycling to work than the proximity of a bike-share station to work (destination 

accessibility) (with SHAP importance values of 0.133 and 0.082 respectively). It is predicted that 

respondents who have access to a bike-share station near their home are more likely to cycle. 

Secondly, the influence of accessibility to a bike-share station on campus is asymmetric for cycling 

to work for university staff. The lack of accessibility to a bike-share station on campus has a stronger 

negative relationship with the outcome compared to its limited positive effect. Thirdly, there are again 

non-linear effects with distance behind these two overall effects on the accessibility of shared bike 

stations, as shown in Figure 7, corresponding to the SHAP dependence plots of the pairs of these 

features with interaction values. Individuals living close to a bike-share station (purple dots in Figure 

7a) are much more likely to cycle to work, but only when the distance from home to work is between 

3 and 7 kilometres. For shorter distances, accessibility to the shared network is associated with lower 

levels of cycling, and for distances over 7 kilometres the effect is also negative, but very small. 

Similarly, the relationship between accessibility to an on-campus bike-share station and the likelihood 

of cycling to work changes with distance, particularly for the university employees who do not have 
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these access points on their campus (orange dots in Figure 7b): it is negative until the home-work 

distance is less than about 7 kilometres, and then becomes positive. Moreover, people working on 

campuses close to a bike-share station (purple dots in Figure 7b) are more likely to cycle to work if 

they live less than 7 km from their workplace, and not just between 3 and 7 km, as the accessibility 

of this shared network to home is. Improving accessibility to a shared cycle network therefore seems 

to be a lever for increasing cycling, but our results suggest that deployment efforts should focus on 

residential areas within 7 km of major employment centres (such as campuses), as beyond this the 

negative effect of distance seems to dominate. Furthermore, this 7 km threshold corresponds to a 

cycle time of around 30 minutes at an average speed in an urban area (12 to 14 km/h).  

 

Figure 7. Interaction effects between accessibility to self-service bicycle station (a: to home, b: to 

campus) and home-to-work distance 

 

Source: own processing.  

For the remaining accessibility-related features, Figure 4 shows a very low SHAP importance 

score (0.006) for accessibility to public transport close to home and a SHAP importance value of zero 

for accessibility to public transport on campus. Accessibility to a public transport station is also not 

a strong determinant of cycling behaviour based in our dataset. Similarly, accessibility to a train 

station seems to have little influence on the decision to cycle to work (contribution values of 0.021 

for origin and 0.009 for destination). Nevertheless, the relationship is positive, confirming a form of 

complementarity between the two modes, train and bicycle, especially for university staff living far 

from the campus. Improving the quality of this type of intermodality could therefore be a way of 

increasing cycling. 

In Figure 4, a non-symmetric effect is observed with respect to the telework variable. 

XGBoost uses one-hot encoding for categorical features which allows us to examine the role of each 

category in the prediction (Chen et al., 2019). From this perspective, respondents who telework 
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regularly are more likely to cycle, while not teleworking regularly does not reduce the likelihood of 

cycling as much. Promoting regular teleworking among university staff could therefore encourage 

them to cycle more on the days when they have to travel to work. Figure 8 suggests that this type of 

measure could be even more effective for staff who live more than 5 km from their place of work. 

 

Figure 8. Interaction effects between regular teleworking and home-to-work distance 

  

Source: own processing.  

4. Conclusion 

In addition to its well-documented environmental benefits and contributions to energy efficiency in 

urban areas, cycling as a commuting mode is often considered as a remedy to the physical inactivity 

imposed by many modern work environments, resulting in physical health benefits (Raustorp and 

Koglin, 2019; Nieuwenhuijsen and Khreis, 2019). The physical benefits of cycling have also been 

shown to occur in conjunction with positive mental health outcomes (Humphreys et al., 2013; Martin 

and Suhrcke, 2014; Petrunoff et al., 2016; Synek and Koenigstorfer, 2019). For instance, it has been 

observed that regular biking can reduce psychological distress and increase the life satisfactions of 

individuals (Ma and Wang, 2021). The positive mental effects of bicycle commuting can be partly 

attributed to the fact that this mode provides a relaxing and engaging commuting experience in 

addition to a feeling of greater autonomy due to the avoidance of unpredictability caused by traffic 

congestion (Wild and Woodward, 2019). Our analysis of the MobiCampus-UdL survey has therefore 

been focused on explaining the reasons for adopting cycling as a commuting mode, at a personal 

level, by focusing on university staff. 

In order to address our research question, we implemented a sequential ensemble model based 

on classification trees followed by the usage of interpretable machine learning tools. Our empirical 
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approach allowed us to infer complex relationships present in the MobiCampus-UdL dataset through 

algorithmic modeling. Upon confirming the existence of a class of bike commuters clustered based 

on all the features in the training data (i.e. clusters based on random forest predictions), we predicted 

a binary outcome (bike to work or not) through the application of a gradient boosting machine. Our 

inferential analysis using SHAP values suggested that access to bicycles, either through ownership 

or sharing, coupled with spatial proximity to bike-sharing stations, contributed to the likelihood of 

individuals using bicycles for commuting to varying degrees depending on the distance between home 

and work. Our findings suggest that the deployment of bike-share stations should be done in 

residential areas that are, at most, within 30-minute bike ride from major employment centres.  

As the machine learning techniques implemented in the present study allowed us to explore 

interactive and nonlinear relationships between access to cycling and to public transport, our findings 

uncovered implications for the complementarities and substitutabilities of these modes as a function 

of distance. More specifically, we observed that cycling and public transport become complementary 

modes as the distance between home and work increases. We also observed that another model feature 

that is highly interactive with home-work distance is teleworking. Regular teleworking is positively 

associated with the use of cycling for commuting, especially for people who live more than 5 km 

distance from their workplace. 

At the level of local public policy, our results suggest that some of the measures recently 

introduced in universities could have a positive impact in terms of increasing cycling and reducing 

CO2 emissions. For example, the 'Sustainable Mobility Package' (“Forfait de Mobilité Durable”) 

introduced in 2020 for all public sector (and therefore university) staff, which offers an annual sum 

of between €100 and €300 to any staff member who regularly uses a bicycle to travel between home 

and work, should help to achieve this goal, especially as it can be cumulated with partial 

reimbursement of the cost of public transport season tickets. In particular, this initiative could 

encourage the use of bicycles by staff living more than 7km away, who contribute significantly to the 

carbon footprint of academic institutions associated with commuting. Similarly, a more systematic 

offer of at least 1 or 2 days per week of teleworking to staff in the university community could be 

expected to have a dual effect: a direct effect in emissions through a reduction in the number of 

weekly journeys, and an indirect effect through an increase in the use of bicycles on days when staff 

have to travel to campus. In addition, some of the preliminary results of the MobiCampus-UdL survey 

have been used as a basis for the new mobility plans for the university campuses in Lyon. 

As a future line of research, it would be interesting to carry out new waves of surveys on the 

same campuses in the near future, in order to assess the changes in the use of bicycles in relation to 

the improvements made on certain campuses and the general increase in the use of bicycles following 
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the Covid-19 health crisis, as well as changes in the perception of this mode of transport. More 

generally, the same method of analysis would deserve to be reproduced on a wider population, 

including categories of people with different behaviours to those of university staff. There are likely 

to be other determinants, such as convenience or perceptual and economic dimensions of cycling, for 

populations with lower social status.     
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Appendix  

An analysis of potential anomalies in our data is done from the Figure A, in which the orange color 

corresponds to bicycle users and the grey color represents the non-bike users. The numbers on the x-

axis are respondent identifiers and the values on the y-axis represent their isolation forest anomaly 

scores. We can state that the vast majority of the data instances fall below the score of 0.5 and the 

remaining are not too close to 1, and therefore, we do not have highly anomalous observations in our 

data set. 

Figure A. Isolation Forest Anomaly Scores 

 

Source: own processing.  

 

 


